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ABSTRACT

Bottom interaction is recognized as an importent and only
partially understood component of low frequency underwster
sound propagetion. Several nhases of this complex problem
have been investigeated during the first yeer of a planned
multiple year study. This report describes several aspects
of the study including sensitivity of propagetion loss to
bottom loss variations, sensitivity of bottom loss to varia-
tions in ocean bottom physical parameters, bottom roughness
effects, and propagetion over a sloping bottom.
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I. INTRODUCTION AND SUMMARY

This report describes some of the results of the first year of a
planned multiple-year investigation of sea bottom interaction of propageting
louy freguency underwater sound. Because much of the work is still in
progress, the report pictures an investigation and is not conclusions of
a completed study. As different phases of the work are completed, begin-
ning in the second year, technical reports are to be issued that present

conclusions.

The background for the study is described in the introduction,
followed by a summary of the report. The subsequent chapters (II, III,
IV, and V) are written to each give a description of separate aspects of
the ongoing program. Chapter II deals with studies of sensitivity of
propagation loss to variations in the bottom loss, whereas chapter III
describes studies of the sensitivity of bottom loss to variations of the
geoacoustic description of the bottom material. The investigation of the
effect of bottom roughness on propagation is described in chapter IV and
the study of propagation over s sloping bottom is described in chapter V.
The subject of each chapter is also the subject of a task of the overall
bottom interaction program. Although these subjects are all related, in
this report they are treated separately because they ere now being
separately studied.

A. Introduction

Underwater sound energy propagates between a source and receiver by
one or more of several paths: direct (refracted-re.racted, R'R'), surface
reflected-refracted (R'SR), bottom reflected-refracted (R'BR), and surface
reflected-bottom reflected (SRBR or simwply RR) being the conventional
designations of the more important multipaths (surface duct and leakage or
diffraction multipaths being significant in some cases). The relative
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amount of sound energy arriving via the various paths (the partitioning
of energy among the multipaths) is a function of the propagation geometry
(source depth, receiver depth, bottom depth, and topography), of the form
of the sound speed profile and of other parameters such as frequency of
the sound and loss associated with phenomena occurring along a given path
(e.g., surface reflection loss).

The question of the relative importance of bottom interaction in the
propagation process is complex. In some circumstances, underwater sound
propagation is dominated by non-bottom-interacting energy regardless of
the bottom rerlection cnefficient. In other circumséances, the details of
the bottom irteraction strongly determine the propsgation loss. For long
renge propagation in some geometries multiple intersctions with the bottom
will result in extreme sensitivity of propagation loss to smaell changes
in the reflection coefficient. This sensitivity can be such that single
bounce reflection measurements cannot be made with sufficient accuracy to
allow accurate estimation of propagation loss (i.e., if bottom interacting
multipaths dominate the propagetion, an error of 1 dB in the bottom loss
would result in a 10 dB error in the propagation loss estimate for ranges

such thet ten bottom interactions occur).

Another complexity in the bottom interaction problem involves &
question of the adequacy of characterizing the bottom interaction pi~cess
with a plane wave reflection coefficient. Underwater sound energy
impinging on the sea bottom is partially reflected back into the water and
partially transmitted into the bottom material. At sufficiently high
frequencies, the bottom interaction has been successfully represented by
a reflection coefficlent. As frequencies of interest decrease, more and
more bottom penetrating energy is returned to the water column. This
bottom penetrating energy reflects from subbottom leyers and is refracted
by the usually observed positive gradient of sound speed with depth in the
bottom. At some low frequency, below a few kilohertz and gbove the fre-
quencies used in seismic subbottom profiling, the relative smount of

energy in the subbottom returns becomes so large that it cannot be ignored
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in the bottom interaction process. The frequency regime requiring
treatment of the bottom as a coupled propagation domain will, of course,
be dependent on the propagation geometry and the geoacoustic description
of the water and bottom in the area of interest. Additional complexity
is introduced into the bottom interaction problem by & range changing
geoacoustic description of the water or bottom as well as by topogrephic

variations on scales varying from a sloping to a rough bottom.

If either reflection at the sea bottom interface or propagation
through the subbottom is required to accurately model a given propegation
situgtion, then an important question must be answered: how much detail

and accuracy is required in the input geophysical description of the
bottom?

in the present investigation, various features of the bottom
interaction are studied individually to develop a quantitative understanding
of thelr importance. For example, the question of when variations in
bottom loss are significant to low frequency propagation is being investi-
gated for a horizontally stratified ocean by runs of propegetion models
such as FACT. The bottom loss versus grazing angle input to the model is
varied and the resulting variation of propagation loss is computed for
various sound speed profiles, propagation geometries, bottom depths and
frequencies. This results in a quantitative description of propagation
sensitivity to variastions of boltom loss. To relate bottom loss to
variations in the bottom material, the changes in bottom loss associated
with various geoacoustical descriptions of the bottom are calculated with
bottom loss models. The result is a quantitative description of bottom
loss sensitivity to varying sea bottom materiael. Considereble progress
has been made in this study as described in the following chapters. A
detailed presentation of the results of this part of the work is to be
maede in a separate technical report.

If the bottom interaction is characterized by a reflection coefficient
(or bottom loss), then a pertinent concern is the degree of bottom loss
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introduced by bottom interface roughness. Part of the present study
examines the usefulnecs of existing scattering theory to answer this

question.

Another task is the investigation of propagation in a region with
a slcping bottom. Severasl questions are of interest. How well do pre-
dict:one using existing techniques compare with ocean propagaetion data
and with exact golutions in simplified sloping bottom regions? What are
the sencitivities of this type of propagation %o changes in source/
receiver geometry, sound speed profile, frequency and bottom description
(for various segments of the propagation path)? What approaches are
promising for improving prediction capability?

All of these studies are designed to elucidate our present prediction
cepebilities for bottom interescting multipaths, to suggest lines of
approach where prediction deficiencies exist, to determine the minimum
amount of information required for adequate predictions, and *- determine
ouwr existing bottom description data base and techniques for .ing in

the gaps.

B. Summary

Four aspects of a study of bottom interaction of low frequency sound
are described separately in Chapters II through V. The four aspects, also
to be considered separately in this summary, are: sensitivity of propa~
gation loss to bottom loss variations, sensitivity of bottom loss to
varisbtions in the geoacoustic description of the bottom, rough interface
effects, and propagation over a sloping bottom. Progress has been schieved
in each task area in problem identification and devel~pment of tools and

methods, and in obtaining initial results with these tools and methods.

1. Sensitivity of Propagation to Bottom Loss

The propagation parameter being studied is propagation loss.

The propagation loss has been shown to be very sensitive to varietions of

s
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bottom loss for some propagation geometries and sound speed profiles,
whereas it is relatively insensitive for other combinations of thes-
parameters. This seemingly trivial result is important because the degree
of sensitivity is being quantified for different combinations of param-
eters: this is a significant step beyond reliance on intuition to define
sensitive and insensitive propagation geometries. One of the first goals
of this phase of the work has been identified. It is to determine those
combinations of propagation par;meters (source depth, receiver depth,
profile form, bottom depth) showing only small sensitivity to bottom
effects (and quantifying what is meant by "small"). This excludes a
domain of parameter combinations from the more complete examinstion of
detailed aspects of the importance of bottom loss variations. For those
combinations c¢f perameters not thus excluded, detailed investigaetions are
under way to determine which grazing angle segments (of the bettom loss
versus grazing angle curve) are important and what the quantitstive sensi-
tivity is. In chapter II, some examples are given for approaches being
examined, using range averages of propagation loss, to identify insensitive
combinaticns of paremeters. Such averaging techniques must, of course, be
used with caution and details of the actual propagation loss versus range
curves must be examined to verify any domeins identified as "insensitive."
Alsu described in chapter II are some of the deteiled examinations being
conducted in sensitive portions of the water column (e.g., near the bottom)
to quantify the sensitivity (x change in bottom loss produces y change in
propageticn loss) and the grazing engle segments controlling the sensitivity.

A technical report detailing the results of these studies is in preparation.

2. Sensitivity of Bottom Loss to the Geoacoustic Description of
the Bottom

One primary goal of this work has been identified as a determination
of the "hidden depth.” This is the depth below which the geoacoustic
description of the bottom meterial does not affect the calcvlation of bottom
loss. That is, below this depth the bottom material can be clay, sand,
rock, or clathrate and the resulting bottom loss will be the same. This
depth defines the maximum depth to which one must describe the bottom

5
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material to accurately calculate bottom loss (or interpret bottom loss
measurements). The results will obviously be frequency dependent, and
will probably also depend on such parameters as absorption and gradients
of sound speed in the bottom materiel. Initial results from this study
suggest that the hidden depth (for & ray incident at a given bottom grazing
angle) lies within a few wavelergths of the turning depth of the ray in

the bottom.

Another question is, for depths shallower than the hidden depth,
how much precision is needed in the geoacoustical deseripbion of the
bottom? That is, how accurate must geoacoustic descriptions or measure-
ments be (and what is the required resolution) to produce bottom loss
results within acceptable bounds?

To answer these questions, verious bottom loss models are being
used. These include a Rayleigh reflection coefficient model, an implemen-
tation of the Morris pseudolinear gradient model (with shear waves added
to the lowest leyer), and a numerical integration model developed at ARL.
The lest model was developed to overcome the difficulties of using the
pseudolinear gradient model for very thick layers, as must be done to
address the hidden depths question. Other models will be used in this
study as they become available.

The ARL numerical integrabtion bottom loss model makes it possible
to investigate the influence of density gradients on the bottom loss.
Density gradients used were within the observed bounds reported by Hamilton
(ref. 14 of chapter III). The change of bottom loss resulting from intro-
duction of the density gradient (versus constant density calculations) was
found to exceed 1 or 2 dB only rarely, with more common values on the order

of a few tenths of a decibel.

The effects of shear waves in the wm.derlying basement rock were
also studied. They were Ffound normally to be important only for steep

angles of incidence on the bottom. However, for some combinations of

6




parameters, especially for clay and silt overburdens, shear waves in the
basement rock can cause large changes in bottom loss et low angles. This
is potentially significant because it occurs in a grazing angle segment

identified as important for low fregyuency propagation.

3. Rough Interface Effects

Various available techniques were exemined for including
roughness in bottom interaction calculations. The reflection coefficient
method accounts for rough interface scattering in a propagation problem
by multiplying the ordinary bottom reflection coefficient (for a flat
bottom) by a scattering coefficient determined from the topographic
properties of the rough bottom. The resulting product is then used in
propagation calculations as g modified reflection coefficient for the
bottom. Aveilable conventional scettering theory for a penetrsble rough
interface has been examined, necessitating the writing of a computer program
to examine the predicted degree of sensitivity of the modified reflection
coefficient to rough bottom parameters such as the rms surface slope. The
large sensitivity to this parameter, predicted by the theory, is interpreted
to be a result of shadowing corrections and a single scattering assumption
introduced in the development of the theory.

A potentially more useful approach, that of Lysanov (ref. It of
chepter IV), replaces the exact boundary condition on the rough surface by
an approximate boundary condition on the mean plane of the bottom. This
perturbation approach is potentially valuable for the present study because
it sets out from the beginning to specify a boundary condition for a
propagetion problem. It is anticipated that the continuing work on rough
interface effects will be along the lines initiated by Lysanov, and more

recently pursued by Kupermen (refs. 5 and 7, chapter IV).

Lk,  Propagation over a Sloping Bottom

Two numerical models capable of propagetion calculations in a
range changing environment were implemented et ARL. They are the NRL ray

T




model TRIMAIN and the AESD parabolic equation model PE, Although the
abilizy of these models to treat bottom interacting energy has some
limitations, the nodels have been found useful for slope enhancement
calculations. The slope enhancement shown by some recent data sets can
be approximated by calculations with these models. The enhancement was
found to be related in a complex manner to source and receiver depths,
sound speed profile, angular slope of the bottom, and bottom loss on the

slope. Quantifying these relationships is the goal of ongoing sensitivity
studies.

Po tust the validity of some of these calculations, various
theoretical appreoaches to calculation of propagation over e sloring bottom

are being examined. These include a dual integral equation approach and
mode~mode coupling.

ety




id

II. SENSITIVITY OF PROPAGATION TO BOTTOM IOSS

A. Introduction

The impact of variations in the geoacoustical description of the
bottom on propagation is being investigated at ARL by studies of propaga-
tion loss sensitivity to bottom loss variations an. of bottom loss
sensitivity to variations of the bottom geoacoustics. Iater studies will
directly investigate propegation loss sensitivity to variations of bottom

geoacoustics without the intermediste calculation of bottom loss.

The challenge of the present study is to determine techniques for
rneasuring and describing these sensitivities in a concise manner. The
brute force approach would involve a very large number of computer model
runs and subsequent publication of a catalog of results. This would not
be very useful. Therefore, our approach is to make a few test computer
runs, extvend hypotheses of sersitivities based on these results and a
knowledge of the propagation processes and then test these hypotheses with
additional runs. In this way an understanding of bottom interaction is
developed. Our present challenge, in addition to continued development of
this understanding, is the development of technigues for conveying the
understanding without requiring a person to go through the entire process
as we have. Intermediate results of propagation loss sensitivity are

described below.

The sensitivity of propagation loss to bottom loss has been studied
using FACT model runs. In order o simplify the problem, certain parameters
were held fixed for most of the model runs. These paraneters were source
depth (500 £t), frequency (100 Hz), and the sound speed profile, shown in
FPig. I1.1. This profile, which is a simplification of a North Pacific
profile, was used in these initial studies to allow controlled varistion
of its characteristics. The profile is representative of many regions of

the subtropical oceans and has a well developed deep sound chsnnel.
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With source depth, frequency and profile fixed, parameters that varied
were recelver depth, bottom depth, and bottom loss versus grazing angle.
The receiver depths studied were the channel axis (700 m), the ecritical
depth when it existed (3600 m) and 30 m off the bottom. Five bottom depths
were used. They produced a depth deficiency of 100 m and depth excesses
of 60 m, 670 m, 1280 m, and 1400 m. The bottom loss versus grazing angle
curves which were used are shown in Fig. II.2 and are those designated as
types 1, 3, and 5 in the FACT program. The bottom type 1 is a low loss
bottom, exhibiting no loss below a critical angle of 19°. Bottom type 3
is of intermediate loss and bottom type 5 is high loss, having some loss
at all grazing angles.

The propagation loss for each of the runs was calculated at 120 range
points out to 480 nm range. Since direct comparisons between runs at
individual range points have little real meaning, averages of the 4B
propagation loss over approximstely 100 nm intervals were cealculsted for
each run. Comparisons between these averages were performed to determine
the magnitude of the bottom effects.

B. Bottom Depth Dependence

The averages of propagation loss for three receiver depths are
presented in Tables II.1 through II.3 as a function of the bottom depth.
Within each range interval column comparisons can be made to determine

bottom depth dependence.

The bottom depth dependence for either the axis depth or critical
depth receiver is dependent on bottom type: for bottom type 1, loss
decreases with decreasing bottom depth; for bottom type 3 only small
variation is shown with no consistent bottom dependence; and for bottom
type 5, loss increases with decressing bottom depth. Furthermore, for
these two receiver depths and bottom type 5, the effect of a 600 m change
in bottom depth was greater for a shgllower initial bottom depth. A
600 m decrease in depth from 5900 m resulted in about 0.6 dB increase in
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propagetion loss at the axis receiver. The same depth change from an
initial bottom depth of 4300 m resulted in a 1.2 dB increase. The effects
of the change in bottom depth from 5000 m to 3660 m for a type 5 bottom
were range dependent. For the axis receiver the effect of this change in
bottom depth was 2.7 dB in the 100 to 200 nm interval and only 1.9 dB in
the 300 to 400 nm interval. For the critical depth receiver this effect
for the same two range intervals was respectively, 15.2 @B and over 80 dB.

For all bottom types the propagation loss to a receiver 30 m off the
bottom decreased as the bottom depth decreased. When the bottom depth
decreased from 5000 m to 3500 m, the propasgation loss for a type 1 bottom
decreased by 3 dB, while for a type 3 bottom, .1t decreased by 3.5 dB.

For this same change in bottom depth, the decrease in propagation loss for
the type 5 bottom was between 9 and 30 dB; the decrease being range
dependent with larger effects at greater ranges.

Two competing factors produce the observed results. (1) As the bottom
depth is decreased, more energy interacts with the bottom and the bottom
interaction angles are steeper (which factors tend to increase the average
propagation loss). (2) The reduced bottom depth reduces the total volume
over which the propagating energy is spread (which factor tends to reduce

the average propagation loss).

The relative importance of these factors is modified for the different
bottom types according to the value of the critical angle and the bottom
loss below vhe critical angle. Bottom types 1 and 3 are perfect reflectors
at grazing angles less than their critical angle. As the bottom depth

2creases, additional bottom interactions above critical angle will result
in edditional losses but this is counteracted by rays intersecting the
bottom below the critical angle and being redistributed over a smaller
depth interval. For the sound speed profile of this study, redistribution
of the low grazing angle energy dominated the additional loss of energy

at higher angles. The effects of moving the bottom up the water column
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were independent of range for these two bottom types. This indicates
that beyond 100 nm range the bottcm interactions above the critical

angle become insignificant in FACT's calcvlations of propagation loss.

The critical angle is much smaller for bottom type 5 and there is a
finite loss below the critical angle. VWhen the bottom depth is decressed,
the additional bottom interactions result in a significant additional
loss. This loss is sufficient to cause an overall increase in propagation
loss with decreasing bottom depth for the sound channel axis and critical

depth receivers.

The results in Table II.3 indicate that the amount of energy
reaching the receiver 30 m off the bottom increases as the bottom depth
decreases, independent of the bottom loss characteristics. These results
obtained with the ray theory model FACT are being compared with results
from the wave theory model PE.

C. Receiver Depth Dependence

Table II.lt presents the average propagation loss for a series of
receiver depths in 5000 m of water (a2lso for the profile in Fig. II-1).
Results are shown for receivers at axit depth, at critical depth, and
at receivers spaced about 300 m apart between critical depth and the
bottom.

Receiver depth dependence is small and follows a similar pattern for
either type 1 or 3 bottoms. The average propagation loss decreases about
1 dB between the axis depth and critical depth. Below critical depth,

the loss in general increases with receiver depth.

For the type 5 bottom, the loss in general increases with receiver

depth at all depths. The increase in propagation loss with depth change
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was greatest between 4420 and 4970 m depth. Near the bottom, small
changes in the receiver depth led to large changes in the average
propagation loss.

D. Bottom Loss Dependence

Comparisons were made between average propagation loss for the
various bhottom types in the discussions of Tables II.1l through II.3.
Differences were described as being the result of change in the critical

angle and as the effect of the variation of bottom loss below critical
'3 angle. '

Comparison shows that differences in average loss associated with
changes between the types 1 and 3 bottom are independent of the range;
this is due to the perfect reflection below the critical angle. The
differences between the calculations for these two bottom types increase

with receiver depth. The differences are generally less than 2 dB.

Two additional test cases were run. For these the bottom loss
below the critical angle was varied to examine the sensitivity to the low
grazing angle losses. The receiver in both cases was 30 m off the bottom.
For the first case, the profile of Fig. II.l was used together with an
initial bottom losg curve which was similar to a type 1 bottom. Below '
the critical angle, constant bottom loss values of O, 1, 2, and 3 dB

were used for the separate runs (see Fig. II.3).

The resulting four propagation loss curves are shown in Fig. II.k.
With a pexfect reflector below the critical angle, the propagation falls
off with oanly an inverse range dependence (no convergence zones are
apparent). VWhen a 1 dB locs is introduced below critical angle, an

additional decibel of loss is incurred for each bottom interaction.

There are approximately 15 convergence zones out to 400 nm, which

accounts for most of the 19 dB difference between the O 4GB and 1 dB
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loss runs at 400 nm. Similarly, the 16 dB difference between the 1 B
and 2 dB runs and the 15 dB difference between the 2 dB and 3 4B runs can
be accounted for by the additional losses below the critical angle.

As the energy reflected from the bottom decreases in runs with success-
ively higher loss below critical angle, the bottom reflected energy

does not dominate the received signal and convergence zones appear.

To examine the influence of a smaller segment of bottom grazing
angles, & second set of runs was made. In the second case a measured pro-
file was used. The bottom loss used in this case varied only in the O to
1° grazing angle segment (Fig. II.5). For one run, the loss was 1 dsB,
and for the other, 2 dB for grazing angles below 1°., The two propaga-
tion runs for case 2 appear in Fig. II.6. In this case the two curves

also separate about 1 dB per convergence zone.

The bottom bounce energy at long range falls off at the same rate
for the 1° critical angle and the 19° critical angle (compare Figs. II-k
and II-6). This is true because, for this near bottom receiver, at the
long ranges, only very low grazing angles are important; this is further
illustrated by the arrival angle structure shown in Fig. II.7. The

higher angles will affect the falloff only at the shorter ranges.

These are but a few examples of the propagation loss sensitivity
studies which are underway. They show that in some cases great sensi-
tivity to bottom loss is exhibited by propagation loss model runs,
while in other cases the propagation loss is relatively insensitive to
the bottom. Systematizing and quantifying these observations is con-
tinuing. One of the present efforts is delineating those propagation
geometries exhibiting minimal sensitivity to bottom interactions.
Another effort is delineating the details of the relationship when

bottom interaction is a significant component of the propagation.
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III. SENSITIVITY OF BOTTOM LOSS
TO THE GEOACOUSTIC DESCRIPTION OF THE BOTTOM

A. Introduction

A relatively complete geoacoustic description of the bottom is
required for prediction of some propagation phenomena at very low fre-
quencies., However, many models used for predicting underwater sound
propagation treat the bottom as a reflecting interface which can be
characterized by a plane wave reflection coefficient (or bottom loss).
Given such a description, it is then reasonable to ask, independent of
any propagation situation or model, about the sensitivity of the reflec-
tion coefficient (bottom loss) to chenges in any of the physical parame-

ters characterizing the bottonm.

Of course, if a particular propagation situation is not specified it

is not possible to restrict the angular range over which such questions
are to be answered. Although we shall usually have in mind long range
acoustic propagabion paths for which the bottom loss at low grazing
angles dominate, the study will not be restricted to such aingles. For
shorter ranges or severe bottom depth deficiencies, the higher grazing
angles will also be important.

Given a bottom loss model of multilayered horizontally stratified
sediments overlying a rock substrate, the number of physical parameters
and layering configurations required for an exhaustive sensitivity study
is quite large. In this report application of models is restricted
to the simplest and most obvious questions, such as the importance of

shear waves, sound speed gradient, densiby gradient, etc.

27

4
——— e e —— e o e e e eea———

.-

'} PREGCEDING PAGE BLANK-NOT FILMED




M

In addition to sensitivity of bottom loss to changes in a specific
parameter, there is the generic problem of determining the depth below
which nothing needs to be known about the sediment or substrate. These
depths, the hidden depths, will of course depend on the propagation
configuration (range of bottom grazing angles) as well as sedimentv type,
sound speed gradient, absorption, and frequency. Although there is not
a final answer to the hidden depths question considerable progress has
been made.

B. Development of Bottum Loss Models

1. Preliminaries

Given the wide scope of this task, it is clear that a
reasonably sophisticated bottom loss model will be required. Since we
are at present treating the rough surface problem separately, it is
reasonable to assume a model which is completely horizontally stratified.
Beyond this it is not immediately clear, without prejudging the outcome,
what other aspects of the general case might be ignored. One simplifica-~
tion is achieved by restricting the sediments to fluids. It may be
that shear waves provide a nontrivial loss mechanism in some subbottom
sediment layers. However, the additional complexity introduced by
including them is not justified in the initial part of the study. The
shear wave speed in unconsolidated sediments is usually less than 10%
of the coupressional wave speed., However, in the underlying basement
rock it is no longer reasonable to ignore shear waves because the shear
wave speed can be on the order of 50% of the compressional wave speed

and can therefore provide a significant acoustic path.

We are left then with a class of bottom loss models based on a
series of horizontally stratified fluid layers overlying a semiinfinite
solid layer. Two other significant points are the variation of sound

speed and density with depth within any given sediment layer. The
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simplest case, constant sound speed and constant density, has been
adequately treated in the literature. The generally observed linear
increase of sound speed with depth should be incorporated in any model
used in the sensitivity study. Estimates of the importance of variable

density are to be made in a later phase of the work.

2. EBarly Attempts

By ignoring for the moment the possibility of & continuously
veriable density, the mathematical problem can be very simply stated.

The field (velocity potential) in the water is written as

ikosinez ~ik zsiné
® =e€ + Re o

vwhere k.o=a;/co and R is the reflection coefficient. In each sediment

layer we must solve

2

0.
i 2 2
5 * (ki (2) - X

cos2 9) ?; = 0 B
9z

where kiz(z)=w?/ci2(z) and ci(z) is the sound speed in the ith layer.
At each sediment-sediment (or sediment-water) interface the fields must
satisfy the usual conditions of continuity of ¢i and pi¢i. At the
sediment-rock interface the conditions are more complicated and will be

discussed later.

The only difficult part of the problem is, for given {ci(z)},
to solve the one-dimensional wave equation in each layer. There are

several ways in which this question may be approached:

a) analytical methods - choose ci(z) such that the equation is
solvable,

b) asymptotic techniques - for example the WKB method.

29
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¢) perturbation - variational methods, and
d) numerical methods - a numerical integration of the wave

equation itself.

Since our primary object is to study bottom effects rather
than to develop models, the straightforward approach was to investigate
first an analytically solvable model. Previous applicable work has
been published byrviorris.]"'5 Her work has been extensively applied
to predict and correlate experimental bottom loss data from various
areas. This model is based upon the pseudolinear sound speed mode].,
c(z)=c/T#Bz, which for small Pz becomes c(z)Zcl1-1/2(Bz)] repre-
senting a linear increase (or decrease) of sound sper? with depth.

From both theoretical and experimental considerations one
expects that the sound speed in a sediment layer will in fact increase
approximately linearly with depth. Consequently, this model is attractive
since it is exactly solvable in terms of Airy functions which may be

evaluated numerically on a computer.

The first attempt at assembling a bottom loss model for use in
the sensitivity study was therefore based on an implementation of Morris'
model. A program was written to evaluate the reflection coefficient in
the Morris formulation using a preexisting ARL subroutine to compute
the Airy functions. The program was checked both internally and by

comparison with Morris' results and was found to be operating properly.

Originally, Morris' model was composed of a series of fluid
sediment layers overlying a fluid half space, also containing a pseudo-
linear variation of sound speed with depth. In the ARL version of this
model the number of sediment layers was restricted to two and these over-
lay a solid half-space containing no sound speed gradient. The inclusion
of shear waves in the underlying half space was the only significant

extension of Morris' original model.
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Although this model has proved useful for some aspects of
the sensitivity study, it has drawbacks when used to address the hidden
depths question. The most important requirements for a model which
can provide answers to the hidden depth question are (l) aen adequate
treatment of the increase of sound speed with depth, and (2) the
capacity to compute the bottom loss for thick sediment layers.

There are, however, difficulties in using the pseudolinear
model for thick layers. One difficulty is that c(z)=c/vfi;§E'will
approximate a linear increase of sound speed with depth for (Pz )<<l
only. When this inequality is not satisfied, a different physical model
is implied. More seriously, since B<0, there will be a depth at which
the sound speed becomes unbounded. This has no physical meaning, but
if there is appreciable sound energy at this depth, it cannot be ignored
since it is built into the mathematical model.

Some of these aspects of the pseudolinear model are discussed
in a recent paper by A. O, Williams, Jr.u Williems also discusses some
aspects of an alternative reflection coefficient based on an exponential
profile kz(z)=k2+q2e"z. Such a profile avoids both the singularity in
the sound speed of a pseudolinear model and the unbounded increase in
c(z) &s zoo of a true linear model. Some estimates using this model

are given, but no extensive calculations have yet been carried out.

In any event, the pseudolinear model will always have an
ultimate hidden depth at z=ﬁ-l since below this depth the sound field

vanishes exponentially in all cases. The "barrier" thus formed can

exhibit tunneling and the highly upward refracting profile can cause

odd diffraction behavior, especially for large angle reflection. These
are again artifacts of the mathematical model. Even in only moderately
thick layers, when the sound speed is finite everywhere, the "anomalous"
upward refraction (relative to a true linear model) can lead to a
desensitization of the reflection coefficient to changes in the physical
description of the subbottonm.

31




Thus, the pseudolinear model is primarily useful for its
originally stated purpose of calculating reflection loss from bottoms
composed of thin layers. It is not useful for investigating the hidden
depths problem because the nature of the question involves thick layers.

An obvious direction to go in improving the existing models
is to use a linearly increasing sound speed, which is the same condition
as the actual physical situation being modeled. The one-dimensional
wave equation with k?(z):a?/02(1+ﬁz)'2 can be solved in terms of Bessel

functions. The solution cen conveniently be taken to be

¢ =AVL + Bz H(i) (w[usz])
vi/h - 1{2/52 °

+ Byl + Bz (2 (—-————iko cos 0 [l+5z_]) , .
Ji/h - 1{"3/(32 P '

where q§})(w) and g}?)(w) ere Hankel functions. At 100 Hz
and a sound speed gradient of 1 sec'l, |k2/52|5hx105; hence we are dealing

with Hankel functions of large order and, generally, large argument as
well. Since k/p>>1/2, the solution is essentially H2(l)/(2)[VW] where
wsk cos/kl(l+Bz) and vzikl/B. The appropriate expansions to use in

evaluating such Bessel functions are the uniform asymptotic expeansions

5

(see Abramowitz and Stegun,” or Olver6). For example,

1-w 1/3 2

v v

: 4 2nif3 2/
w1 () = 2e1ﬂ/3< bt 2>1/ 8, (52 52 ¢) [1 L al ]

+

ous3 M2 VP ) o)
e V5/3 l_ vg + ...
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where §5/ 2=3/2 [ln[(lﬂ—za)z] -1 - 22], and Ai(u) is the Airy fuaction.
The functions ai( ) and bi( ) are tabulated and for low orders are not
themselves prohibitively complicated. Since the argurent of Ai(u) and
Ai'(u) will generally be very large, the asymptotic evaluation of these
functions is appropriate. There is, however, a problem due to the pres-
ence of the factors of ei2n/3 in the arguments of the Airy functions.,

In the absence of absorption this would require evaluation of Ai(u)

for |u|>>1 and arg(u)=£27/3, a region of the complex plane where great
difficulties are found in evaluation of RelAi(u)] and Im[Ai(u)] together.
Furthermore, the acoustic frequency and sediment layer thickness enter
in such a fashion as to frequently lead to exponential function overflow
in computer calculatvions. Another approach was felt to be warranted, in ~
view of the numerical difficulties en.ountered in evaluating these Bessel
functions in the region of interest. This view was strengthened by two
additional points: (1) incorporetion of a continuously variable density
would further increase the difficulties, and (2) for thick sediment
layers it might be necessary to use a model in which the sound speed
gradient was not constant but decreased toward the bottom (and perhaps
the top) of the layer. For these various reasons work on the analytical
solution of linear sound speed models was also terminated and alternate

approaches were investigated.

3. A Numerical Approach to Bottom Loss Models

After briefly considering an approach involving asymptotic
expressions for the solution of the wave equation (WKB solution would
be an example) it was decided to construct a model based entirely on
numerical integration of the differential equation. This approach has
the important advantage of being applicable to essentially arbitrary
sound speed profiles as well as allowing a continuously variable density
to be included in a straightforward manner. Variable density modifica-

T

tions to the usual linear wave equation are discussed by Bergmanhn.
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A direct numerical solution of the depth separated wave
equation on an interval (O,H) requires specification of initial values
of the velocity potential and its derivative @(H), ¢'(H). This can be
accomplished simply by letting the incident wave have an arbitrary
intensity rather than the unit intensity assumed in conventional formula-
tions of plane wave reflection coefficients. In this formulation, the
incident intensity is that corresponding to a unit amplitude in the
substyate just below the lowest sediment interface. The value of @'(H)
is then obtained by realizing that in the substrate the velocity
HZ .nd hence @'=iHp which yields ¢'(H)=iHp{H)=iu

with Q(H):l, and u is a wavenumber appropriate to the substrate., The

potential is ¢(z)=Ae”

usual continuity conditions yield values of ¢ and ¢' in the sediment
just above the sediment-substrate interface and a numerical integration
of the "initial value" problem is then possible. The inclusion of shear
waves in the substrate modifies the fluid-fluid conditions as described
by Brekhovshikh.8

Once the initial values of the field @(H) and ¢'(H) are known,
a direct numerical integration of the depth separated wave equation,
" + (1%(z) -k °

Appendix B, a computer program has been written to implement this

cos2 G)@ = 0, becomes possible. As described in

approach. In the program a Runge-Kutta scheme was employed in the
numerical integrstion (see Shampise and Allen).9 The overall global
error of this integration process is unknown but controlled since the
local error (per integretion step) is specified as a program input.
Extensive comparison with constant sound speed (Rayleigh) models as well
as with the pseudolinear model has shown that the numerical model is
operating correctly and can compute the complex reflection coefficient

to a specifieble accuracy.

Program inputs include the density, sound speed, and attenuation
in all materials, sound speed and density profiles in the sediment layers,
and shesr wave speed and attenuation in the substrate. The conventional

output includes a tabulation of |R| and arg(R) as well as a Calcomp and/or
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a printer plot of |R| on either e logarithmic (bottom loss) or linear
(reflection coefficient) scale. In addition, a tabulation of |¢| and
arg(p) at any given set of angles, throughout the entire subbottom, can
be obtained. That no additional computation is necessary to obtain

this information is a unique aspect of the numerical integration approach.

Fubure development of this model will include a Calcomp plot
capability for the phase are(R), as well as for @(z). A hybrid numerical-
WKB technique, now under investigation, may significantly reduce the
program execution time, as will the conversion of critical parts of the

computer code to assembly language.

C. Sensitivity Assessment

In this section the results of several initial investigations are
given. The questions addressed include the hidden depth question, as
well as the effects and importance of a sound speed gradient, and the
importance of shear waves in the underlying basement rock. Additionally,
the effects of a density gradient are studied and the true linear gradient
model for sound speed is compared with the pseudolinear model. All
gzoacoustic parameters used in the various bottom loss curves given in

the remainder of this section are summarized in Table III-l.

1. Shear Waves and the Hidden Depths

It would be expected intuitively that if the sediment overburden
were not too thick, the presence of shear waves in the substrate would
provide an important luss mechanism, particularly at high grazing angles.
To quantify this effect, we have studied the reflection coefficient for
sediments of various types and thicknesses overlying the substrate.
Figures III-1-I display the effects of substrate shear waves for a 100 m
thickness of either medium sand or medium clay. The sand (or clay)

layer has a sound speed gradient of 1.2 sec'l, bubt no density gradient.
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The most obvious effect of shear waves displayed in these results
is the large peak in bottom loss in the neighborhood of 18°, for the
clay layer. This effect is not a numerical artifact but is a real aspect
of the mathematical model having this particular set of geoacoustic
parameters, A similar peak has been observed, for a different set of
parameters, in the case of the psuedolinear model discussed earlier.
In this case, as well as all others, the "analytical" and numerical

approaches yield identical predictions.

Further examples of this anomalous low angle loss and other effects
of shear waves are given in Figs. III-5 through 7, which show the bottom
loss for a 100 m clay layer at 25, 50, and 100 Hz. The large peak at
approximetely 17° is quite evident in all three cases although it is much
broader, and somewhat lower, at 25 Hz than at 100 Hz. Since the angle
at which a ray first encounters the substrate (ray turning depth equal ’
to the layer thickness) is approximately 20.7°, the behavior shown here
is a clear manifestation of the wave aspects of sound. Since the -
phenomenon is due to energy which is diffracted through the sound speed
profile "barrier", it is not surprising that the peak in bottom loss
is broader at lower frequencies. Other investigations show that the
magnitude and the location of this effect is dependent upon layer thick-
ness, sound speed gradient, sediment material, frequency, and shear wave
attenuation. Further investigation is underway to determine the precise
physical cause of this behavior. The near frequency independence of
the angle of the maximum loss, as well as other factors, suggest that

this effect may be due to a boundary (Stoneley) wave.

One way to atbtack the hidden depth question is to begin with a
sediment layer of given type and thickness and to examine the effect on
bottom loss of increasing the sediment thickness. A slightly more sensi-
tive and informative test involves altering some property of the substrate

for each layer thickness and observing the effect on bottom loss. In
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addition to their intrinsic effects, shear waves provide a convenient
mechanism to switch on and off in an investigation of the hidden depth

question,

Figures (III-8-9) show the effect of shear waves at three specific
angles (20°, 30°, 40°) for clay and silt of various thicknesses. Tt
will be observed that in each case there is a thickness beyond which the
bottom loss is insensitive to the presence of shear waves or to any
further increase in layer thickness. For these situations, this depth
would in fact constitute the hidden depth. The coincidence of the
curves for fluid and solid substrates and the flattening of the curves
holds to within 5><J.0'5 dB, which is on the order of the numerical error
to be expected.

The depths marked zT(O) on these two figures are the thickness at
which the turning point (ray turning depth) becomes coincident with the
lower boundary for a given angle. It will be observed that the hidden
depth is reasonably well correlated with the turning depth. It should
be expected then that the turning depth would provide a crude first
estimate of the hidden depth with an error on the order of a few sound
wavelengths. The turning depth (ray penetration depth), together with
other parameters for the sediment penetrabing ray, were calculated as
described in Appendix E. There are few systematic differences between
the clay and silt cases, and in particular the ﬂidden depth is essentially
the same. In the case of silt the curve corresponding to 40° has been

suppressed for clarity.
Finally, an alternate approach to the general hidden depth question

has bheen taken by Williams, whose resulis are similar to those presented

here. Williams' work is given in Appendix C.
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2. Effects of a Sound Speed Gradient

It is‘already clear that the sensitivity of bottom loss to
changes in any subbottom parameter can be strongly related to the sound
speed gradient, especially if the question pertains to changes of
a parameter deep in the sediment. As a beginning to the systematic
study of the sensitivity of bottom loss to this gradient, the effects of
increasing the sound speed gradient from O to 1.5, for a linear sound
speed c(z)=c(1+Bz), were studied for the case of 150 m of clay overlying
& substrate (both fluid and solid substrates were studied).

Some of the results of this study are presented in Figs. (III-10
through 13). In each case except for c¢'=0 it will be observed that there
is an angle below which the bottom loss 1s insensitive to the presence or
absence of shear waves, Furthermore, this angle increases as the sound
speed gradient increases. This behavior is easily understood in terms of

the increasing amount of upward refraction caused by the sound speed profile.

The most striking effect observed on these curves is the large
change in bottom loss which occurs at low grazing angles when the sound
speed gradient is changed. Since low angles are more importent than high
angles for long range propagation, this effect is quite important, and

further study in this direction is indicated.

3. Comparison of Linear and Pseudolinear Models

Previously published calculations of bottom loss involving
a nonzero sound speed gradient are based on the pseudolinear model
c(z)=c(l+Bz)'l/2, whereas the bulk of the studies reported here are
based on the linear model c(z)=c(l+pz). Therefore, it is appropriate to

illustrate the differences between these models for several situations.
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Figures (III-14 through 17) show, for a& 500 m and 600 m
thickness of clay, the bottom loss based on the linear and pseudolinear
models. The sound speed gradient is specified at the top of the layer

in the pseuvdolinear case, and the singularity in the pseudolinear model
occurs at 521 m, It will be observed that the curves in the linear case
are very nearly identical, whereas significant changes occur in the
pseudolinear case., In fact, in the linear case the curves are

identical up to a grazing angle of approximately 48°,

The general character of the curves can again be understood
on the basis of the turning depth. 1In the linear case the angles at
which the turning depth becomes coincident with the layer thicknesses
are 49.3° and 52° for 500 m and 600 m respectively. In the pseudolinear
case for 500 m the angle is 79° and is nonexistent for depths greater
than 520 m. The general increase in bottom loss in the linear case
from 20° to 48°-49° is then simply due to absorption over the longer
refracted paths (i.e., the deeper turning points). Beyond 49° some
energy is lost into the subbottom, but the pathlengths are shorter and
the combination conspires to cause a decrease in loss. The initial peak
at 11° is caused by a 4.5 m layer overlying the 500/600 m layer (see
Williamsb’) .

In the pseudolinear case the curves are found to be coincident
up to 74° beyond which there are large differences. The large loss
above this angle in the 500 m case is due to energy loss into the sub-
strate. There is no increase in bottom loss at the midangles in the

pseudolinear case,

Calculations carried out for thinner layers show that the
pseudolinear model is a good approximation to the linear model for
layer thicknesses much greater than one might expect. However, since
a true linear model can be handled by numerical integration as easily
as any other model, no further effort has been mede to determine the regime
of validity of the pseudolinear model.
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t, Effects of a Density Gradient

As mentioned previously, the presence of a continuously
variable density, p(z), adds an additional term (-p'/p)p/dz to the
depth separated wave equation for the pressure. Although this has
Tzen known for a long tiwe, no systematic effort has been made to
determine the effects of a density gradient on bottom loss. Scme
discussion of the effects of a density gradient has been given by
Tolstoylo’ll and by Gupta12

are immediately relevant to this project.

, although no conclusions are reached which

Although only a small amount of experimental data are available,

enough is known about density gradients to warrant a theoretical study

of the importance of the effect. Studies reported by Nafe and Drake15
and by Hamiltonl shovw an approximately linear increase of density with
depth for several sediment types. The maximum gradient reported by
Hamilton is 0,002 g/cma/m with typical values in the range 0.0005 to
0.0015 g/cmB/m. Although a linear model, p(Z)=po(l+aZ), is at best

only a good approximation, the general importance of a density gradient

can certainly be determined using such a model.

The effects of a density gradient on bottom loss have been
examined for several cases. Figures (III-18 through 20) disnlay curves
for 50, 100, and 200 m of clay overlying a rock (basalt) substrate. The
density gradient has the valuec p'=0 (solid line) and p'=0.002 dotted

line. From these curves one can conclude:

the effects of a density gradient are small for wost angles,
2. the effects of a density gradient increase with increasing
layer thickness, and
3. at low angles the only appreciable effect will be on the low
angle shear wave anomaly, if it is present. This effect can

be large.
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Pigure (IIX-21) shows the results of smoothing several bottom loss
curves for a 200 m clay layer overlying a rock substrate. Again, it is
apparent that the effect of a density gradient of a physically plausible
size is small, especially at low angles. At higher angles the dominant
effect occurs between the shear wave critical angle, 45°, and the com-

pressionel wave critical angle, Th°, of the substrate.

From these studies we can conclude that the maximum modification
of the bottom loss by a density gradient of presently known magnitude is
on the order of 1 dB at low grazing angles. A possible exception to
this is the low angle shear wave anomaly where a larger effect could

occur.

D. Prognosis

Both model development work and sensitivity studies have been
carried out this year. The state of this problem is summarized below

and future directions are indicated.

1. Model Development

(1) fThe presently existing model works well and can incorporate
essentially arbitrary profiles of sound speed and density.
Shear waves are included in the substrate, but not in the
sediment layers. A wide variety of input-output options
make the program versatile and useful,

(2) Numerical error is controlled, but a running estimate of
overall (global) error is as yet unavailable.

(3) Improvements in the computer code designed to shorten
running time are nearly completed. An improvement of
50 to 100% is expected for thick layers or higher fre-

quencies.,
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An effort will be made to further decrease running time
through a hybrid numerical-analytical method. This will
make possible practical application beyond the present

50 to 100 A limitation.

An effort will be made to incorporate shear waves in the
sediment layers as well as in the basement.

An input option will be provided so that density and sound
speed can be input as a sequence of discrete points with

no assumption concerning functional dependence on depth.

Application to Sensitivity Assessment

(1)

(2)

(3)

(4)

(5)

The hidden depth: question has been investigated and,

at 100 Hz, was found to lie within several wavelengths of
the ray turning depth.

Additional work in this direction must include an
accurate characterization of the hidden depth for a
variety of types of layering.

The effects of shear waves in the substrate have been
investigated and it was found that the dominant effects
occurred between the shear wave critical angle (250°)
and the compressional wave critical angle (=70°).

At low angles, in the case of clay and possibly silt,

but not sand, there can occur a very large bottom loss
over a narrow angular range. The cause of this is still
being studied.

The effects of a density gradient have been investigated
and found to be small. At high angles--above the shear
critical angle--the effects amount to 1 to 2 dB change

in the bottom loss. At low angles very little effect

is observed except in the vicinity of the low angle shear

anomaly where it can amount to 2 to 8 dB.
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(6)

(7)

(8)

The direct effects of a sound speed gradient were
investigated and found to be very large at low angles,
indicating that refraction and absorption are quite
important. Further work is being devoted to quantify

the effects,

The linear and psuedolinear models were compared and
although the psuedolinear model was found to be a good
approximation over a wide range of input parameters,

its limitations on layer thickness preclude its use in
the present studies.

Future work involving sensitivity to changes in other
physical parameters will require a well thought-out method
of organization and parameterization of the data to avoid
8 large catalog of curves as the only result. In
particular, following the work of Hamilton "’ ana
Akal,l6 most geoacoustic sediment properties can be
empirically related to porosity. One approach would then
be to parameterize bottom loss versus grazing angle

as a function of porosity.
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Iv. THE EFFECTS OF BOTTOM ROUGHNESS ON PROPAGATION

A. Introduction

The purpose of this task is to assess the importance of bottom
roughness in long range acoustic propagation in the ocean. Such an
assessment necessarily requires consideration of the validity of various
methods of accounting for roughness. Before discussing such wethods,

a brief comment will be made on the nature of the roughness itself and

its expected effects discussed qualitatively.

For purposes of this study the entire spectrum of bathymetry
variation is divided into two classes, sloping bottom (deterministic)
and rough bottom (stochastic). The surface roughness component is the
small scale roughness which does not show up on an ordinary bathymetric
chart. The vertical relief of such roughness ranges upward to several
tens of meters although more typical values are of the order of a few
meters or less. A more detailed breakdown of roughness scales for a
region of the eastern Atlantic has been given by Clay and Leong.1 At
typical echo sounder beamwidths, the horizontal resolution in the deep
ocean basins is on the order of a few kilometers. Since the horizontal
wavelength of roughness features of the type we are considering is
expected to be on the order of a few hundred meters, this roughness will
not be resolvable with such depth sounders. Larger scale bottom
variations are considered together under the general heading of sloping
bottoms and in this chapter we shall deal with a smell (stochastic)
component superimposed on these.

B. The Reflection Coefficient Approach

The reflection coefficient method is based upon two essentially

simple observations: (1) scattering from an irregular surface is
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described, relative to a plane surface, by a scattering (reflection)
coefficient, and (2) it is possible to replace a direct calculation of
the field in the bottom material with a reflection coefficient and

deal with the field in the water only. This is possible within either
8 ray or wave theory approach. A consequence of these ideas is

that scattering may be accounted for in a propagation problem by multi-
plying the ordinary reflection coefficient by the scattering coefficient

and treating the product as a modified reflection coefficient.

This view, if correct, would indeed be useful because it allows
separation of the scattering and propagating problems. The scattering
problem, though still difficult, is much better understood than the
combined scattering-propagation problem. Moreover, there is a body of

empirical knowledge which suggests that this view is largely correct.

Initial work on this problem was to examine the range of validity
of the underlying scatbering theory, to use it for making estimates of .
scattering loss which could be used in propagabion loss calculations.
The remainder of this section will discuss the conventional view and
what can be learned from it. The last section of this chapter will dis-

cuss alternate approaches.

A systematic and careful effort to derive the (coherent) scattering
coefficient for penetrable rough interfaces was made by Boyd et al.2
After writing integral expressions for the scattered and transmitted
fields, using continuity of pressure and normal component of velocity,
and meking a single scattering assumpbion, these authors arrive at an
expression for the scattered field which contains, in addition to con-
ventional scattering terms, the ordinary reflection coefficient. However,

in this case, it is referenced to the local surface slope, not the (zero)

slope of the mean plane of the interface. Far from the interface the

scattered pressure field in the specular direction, for a point source,

. is given by
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ik( Ro-ml)
ik e -iky .
b, = 5 }(}r_—_ﬁ—ﬁz—_— e ¢ R(6,n)[n cos 6 - sin 6lax dy, (1)

where the surface height is £(x,y) and n=9(/dy, R, and R, are distances
from source and field points to the area element, and R(6,n) is the

usual reflection coefficient referred to the local slope 1. The coherent
field is then given Dby

ik(R *R, )

<r(6,n)[n cos 6 -sin 81>

9> = <~ in7ts, 2—1;- / dx dy 2

RoRl
(2)

-ik -
= < 7% @ln cos 6 - sin B]> P,

where 7 = 2 sin 6 and <e'lk7C> is the characteristic function of surface
relief, and P, is the pressure reflected from a perfectly reflecting

plane surface (image solution).

The important points to be noted are (1) that Boyd et al. do not
obtain the "expected" result <ps>=<é"ih7§>Rpo, with R the usual reflection
coefficient; and (2) if R(6,7) were not a function of 1 the usual result
would be obtained since <n>=0. This last conclusion does not hold away
from the specular direction due to shadowing corrections which make
<h>#0. Another oddity of this theory is that when it is specialized
to & perfectly reflecting interface, |R|=l, there remains an anomalous
factor of 1L - <> cot 9r which, due to shadowing corrections, becomes

unity only in the specular direction.

The presence of slope dependent terms both in R, and in the
scattering slope corrections as well as the concomitant shadowing
corrections, are the distinguishing aspects of this theory. Due to the
difficulties of evaluating the average <R(6,n)[n cot 6 - 11>, Boyd et al.
were only able to examine <ps>/po in a very rough approximation which

broke down near a critical or intromission angle. In order to test

T




more fully the dependence of <ps>'/po on the distribution of slopes and

other parsmeters, a computer program was written to carry out numerically
the one-dimensional integral yielding the slope averaged term

<R(8,1)[n cot 6 - 11>, Apart from a factor of <e'ik7§>, this is the
roughness dependent reflection coefficient. In Figs. (IV-1-2) &ppear
several examples of bottom loss where this roughness dependent reflection
coefficient term has been neglected, not because it is unimportant, but

for the purpose of displaying the effects of the slope dependent terms. The
sediment-to-water sound speed ratio is denoted by No aad the sediment-to-water
density ratios are given by 92/pl’ In all cases the rms slope, s, is

14° for the rough interfaces (and 0° for the flat), which corresponds

to what would be commonly thought of as a very rough surface., The ratio
a/B is the ratio of the imeginary to the real part of the wave number
k=p+ic, It is clear that the effects of surface slope on bottom loss

are appreciable and moreover that this effect is more pronounced for

larger values ol absorption (larger &/B). At high angles the curves

for flat and rough surfaces converge rapidly.

Of course, the true bottom loss, according to this theory, is
obtained by multiplying the factor plotted in Figs., IV-1, IV-2 by the
additional term <e—1h7C>. For a normelly distrib:ted surface this

g/2, where g=(k)'c)2 and o is the rms surface height. For

equals e
example, at 100 Hz and 10° for an rms height of 1 m this factor is
approximately 0.1 dB and therefore produces only a small additional

modification of the plotted bottom loss.

The large effect of roughness shown in Figs. IV-1 and IV-2 1is, of
course, reduced considerably when the rms slope is taken to be a more
reelistic figure of a few degrees. Nevertheless, the fact that surface
slopes can cause such large changes in the reflection coefficient is
disturbing and at variance with intuition. Moreover, the effects of
shadowing are not necegsarily smell since, without such corrections, the
scattering coefficient is unbounded near 0°. The shadowing "corrections"
are therefore seen to be necessary to make the theory well defined end

are not necessarily small.
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It is characteristic of physical theory that a small correction
in the development which leads to a large change in the prediction may
be indicative of an error. The problem in this theory mey be the
single scattering assumption which strictly requires zero surface slopes.
It is quite plausible that, to remain consistent with the original single
scatbering assumption, the surface slopes must be taken to be zero
thereafter. If this is done the result for the coherent field is simply
<ps>=<e'ih7€>po, the classical result.

From the point of view of simplicity and predictability, it would
be desirable for the classical result to be correct and useful in pro-
pagation modeling. The classical coherent scattering coefficient can be
mede to agree quite well with scattering data. For example, Boyd and

3

Deavenport” show such a curve for scattering from pressure release
surfaces, and the agreement is excellent. The impact of such close
agreement is lessened by the realization that the results are quite
sensitive to the choice of the distribution of heights. Nevertheless,
the simple coherent scattering coefficient is the best founded result
of scattering theory and it is important to know just what its limita-

tions are and how far its usefulness extends.

C. TPurther Considerations

To understand what is entailed in such & reflection coefficient
description, it is helpful to discuss qualitatively the expected physical
effects of howndary roughness on propagation. From scattering theory
we know that the scattered field above the interface is composed of a
mean field <> and a stochastic field V¥ such that the mean (coherent)
field is highly concentrated in the speculsr direction. Moreover, the
stochastic (incoherent) field, although contributing in the specular
direction, is more diffuse and beccmes increasingly so with increasing
roughness.
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In a propagation problem these simple facts imply that acoustic
energy encountering the bottom is partitioned in two ways: the Tirst
is the division into mean and stochastic fields, whatever the angle;
the second is between specular and nonspecular components. For a slightly
rough surface (Ra,.eigh parameter of the order of unity or less) the
coherent field may be regarded as being identical with the specular

component, whereas the nonspecular component is entirely stochastic.

If this assumption is valid, it therefore follows that the stochastic
field enters the propagation theory through mode-wode coupling or, ir
ray theory terms, multipath conversion. This relatively simple picture
is complicated by multiple scattering in the vicinity of the rough

surface, which causes the fields to be coupled.

This brief discussion brings out two significant features of the
problem which are often lost in an eagerness to apply some simple :reflec-
tion coeificient formule. Within scattering theory itself, it is clear
that the distinction between mean and stochastic fields is of paramount
importance, as is the fact that energy leaving the rough interface will
do so in all directions, not only in the specular one. The most serious
step in applying scattering theory results is the restriction to the
specular direction. If this is valid, then for slightly rough surfaces

the coherent field will dominate in a scattering situation.

The only remaining problem then is to argue that these results can
be appiied in a propagation situation. The extension is not necessarily
possible (much less simple) since scattering is mathematically an
exterior problem, whereas propagation is an interior one. The approximate
solution to the field in the exterior case is being asked to provide

an gppropriate boundary condition in the interior case.

These questions have not yet been satisfactorily resolved, although

it appears that there are tools available which can be used to at least h
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provide partial answers. A potentially useful approach to the problem
3 of obtaining a correct boundary condition for the coherent field was
the work by Lysanov on pressure release surfaces. This work was
extended to the two-fluid case by Kuperman.5 Related work in this

direction has also been reported by Wenzel.6 This approach is not
based upon scattering theory, but rather seeks to replace the exact
boundary conditions on a surface z=H+{(x,y) with approximate boundary
conditions on the mean plane z=H. The results are to be found only to
lowest order in C, the stochastic function describing surface relief.
The power of this method is thet it indisputably sets out to obtain a
boundery condition on the mean plane rather than extending an expression
for the field at a distant point back to the surface. Also, there is
no difficuldy, in principle, in treating nonisovelocity water, and
indeed Lysanov considers a pseudolinear sound speed model as an example,
The results obtained by Lysanov and Kuperman were applied to a propaga-

7

case with a rough sea surface and s flat sea bottom., The results of

tion problem by Kuperman and Ingenito,’ who considered a shallow water
, these authors ayree with those of Lysanov in suggesting that the effects
of roughness are heavily influenced by the sound speed profile as well

as by the power spectrum (or correlation function) of surface relief.

It is a characteristic feature of this perturbative approach that
the boundary condition (reflection coefficient) for the coherent field
does in fact contain the correlation function of surface relief. This
is in marked contrast to the scattering theory approach which requires
knowledge of only the distribution of surface heights. The details of
the relationships between these two approaches have not been explored
nor have the limitations of the perturbative method been well defined.
Nevertheless, it is clear that this later method offers potential for

considerable progress in this problem, A systematic effort to exploit
the method is underway.
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V. PROPAGATION OVER A SLOPING BOTTOM

A. Introduction

Broadly speaking, the sloping bottom problem is one of determining
the influence of range changing bathymetry on acoustic propagation in
the ocean. As mentioned previously, the general problem of bottom
topographic effects has been broken down into the sloping bottom problem
and the rough interface problem. The sloping bottom problem then deals

with bathymetry variations which would show up on ordinary echo sounding

apperatus (midocean ridges, abyssal hills, seamounts, continental slopes
and margins, etc.). Of these types of bathymetry variation, we have
chosen at the beginning to concentrate on the influence of continental
slopes and margins on propagation both over deep water (basin) and into
shallow water area (continental shelves). The archetypal sloping bottom
problem, for present purposes, is then described by a bathymetry which
displays a smooth decrease in water depth from a large flat bottom
region (basin) through a genitly sloping region to a steeply sloping
region (continental slope) into an extended shallow water region
(continental shelf).

Having set out such a problem it is necessary to ask what tools

are available to investigate sound propagation in such a region. Several
of the computerized propagation models developed at various laboratories
are sufficiently powerful to atback some aspects of such a problem. Ray
theory models, TRIMAIN and GRASS, developed at NRL, can carry out ray
tracing in a range changing environment, and can compute transmission
loss versus range. Another is the recently developed parabolic equa-
tion model. At least two versions of this model have been developed:

one at the Acoustic Environmental Support Detachment (AESD) of ONR and

81

= e+ et

- —_—

_ _ fff PRECEDING PAGE BIANK NOT orrac




another at SACLANT ASW Research Centre. There are other such models,
some of which are to be used in fubure work on the sloping bottom
problem. During the first year, TRIMAIN and the AESD parabolic equation
model have been implemented at ARL. They are being used in an assessment
of sensitivity (of propagation loss over a sloping bottom) to variations

in the bottom description.

A second approach to these problems uses more analytical methods
to extract information in the case of simplified geometries and sound
speed profiles, These studies are useful for calibrating other methods
such as computerized propagation models. Some effort is being made to
use the mode-mode coupling approach of Piercel and Milder.2 Although
this method is in principle rather general, in practice it may be
restricted to the isovelocity case (when the bathymetry is range
changing). Work in this direction is therefore to be regarded as a -
study of the purely geometric effects of the sloping bottom problem.
The interaction between these geometric effects and refraction effects .
caused by a variable sound speed are being studied using the computer
propagation models. The last section of this chapter deals with some

aspects of the work on a coupled mode approach.

Before moving on to the specific details of the work, it will be
worthwhile to discuss qualitatively the effect of a sloping bottom on
propagation., These effects can be divided into five categories, not

all of which are independent or separable:

megaphone .nd inverse megaphone (funnel) effects,
mode-mode coupling (multipath conversion),

interaction of variable sound speed and bathymetry,

= W o -

interaction of variable sound speed, bathymetry, and bottom
reflection coefficient, and

5. partitioning of energy between water and bottom paths.
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The megaphone and funnel effects are simply changes in acoustic energy

density due to changes in water cross sectional area at any fixed range.
This can occur - and indeed will be maximized - in the case of a
perfectly reflecting bottom. These effects are two examples of a more
general class of effects referred to as mode-mode coupling, or in ray
theory terms multipath conversion. In this process, for example, a
particular mode traveling up slope into shallower water is converted

to various higher order modes. The ray aspects of such a process are
depicted schematically in Fig. V-1, which shows the effect of a funnel
geometry of changing slope along the funnel on three initially parallel
roys in the case of a constant sound speed, The process depicted in this
figure is an important component in the so-called slope enhancement effect,

a specific example of which will be given in the next section.

The interplay between refraction due to a variable sound speed and
reflection from a bottom slope can be quite complex, especially when
the bottom is not perfectly reflecting but has a reflection coefficient
that is variable with angle. One particularly simple example of the
interaction between a variable sound speed and bathymetry is depicted
in Fig. V-2. 1In this figure it is supposed that there is a sound channel
and a single axial ray is shown reflecting from the bottom in the case
of three different slopes. Because of the negative sound speed gradient
in the near surface region, there will be for fixed axial ray and shallow
water depths an optimum slope for the transmission of energy into the
shallow water region. This situation is depicted in the middle illustra-
tion in which the ray has an upper turning point that is tangential to
the sea surface. Due to the large number of bobttom vounces in the first
and third cases, the sound intensity in the shallow water region due to
axially transmitted energy will be lower than in the "optimum" case.
It is not difficult to see that the optimum bottom slope, 90, will e
given by 6_ = 1/2 cos'l[C(A)/C(o)] where C(o) is the sound speed at the
surface and C(A) the sound speed on the axis. This discussion is
adapted from Urick.3
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The more complex and realistic situation, where the reflection
coefficient also is variable with angle, is more difficult to illustrate.
It is clear, though, that a bottom loss critical angle on the slope
will play a crucial role in determining the sound transmitted from deep
to shallow water (or the reverse). One goal of the ongoing effort is to
develop an understanding of the role played by such a critical angle
in relation to the source depth, sound -l.annel axis, and shallow water
depth.

B. Investigation and Use of Existing Models

During the past year some effort was made to implement appropriate
models for use in seversl tasks of this investigation. The case of a
range constant environment could be adequately treated by the FACT model
which had already been implemented at ARL in another study. Various
specialized models were developed including RANGER (EIGENRAY) and
BOTLOSS. (These are described in Appendices A and B.)

Study of the case of a range changing environment (sound speed
profile or bathymetry changing with range) requires other types of models.
Accordingly, the ray model TRIMAIN that was developed a% NRL was adopted
for use in this project, as was a current version of the parabolic
equation model developed at AESD. The next subsection deals with the
implementation of these models, and the final subsection with an example

of their application to a particular problem.

1. Implementation of Models

The ray trace model TRIMAIN is discussed in detail by Roberts.h
This model functions by tracking a large (specifiable) number of rays
from the source through a range changing environment (sound speed and
bathymetry). Various types of intensity (coherent, incoherent, range
averaged, depth averaged) are obtained by an interpolation procedure

between rays bracketing a receiver in depth.
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The report by Roberts contains a complete listing of the
orogram which was used directly to obtain a machine readable version.
The original program was written for a CDIC 3800 computer. Due to the
large storage requirement, the program was adapted to run on the CDC 6600

located on the main campus of The University of Texas at Austin.

After exhaustive checks and examination of test cases, the
program has been determined to be running correctly in nearly all its
modes. In particular, the ray trace and depth averaged intensity modes
are operational. Figures V-3 and V-4 allow a comparison between TRIMAIN
and FACT for a particular horizontally stratified test case. For this
case, the bottom loss is 3 dB at all angles and the sound speed profile
has a sound channel axis at 801 m. The agreement is seen to be good,
and the small discrepancies present are attributable to the different
modes of intensity calculation used. The report by Roberts on TRIMAIN
contains a rather complete set of test cases for the programs various
modes. These have been checked in detail with the ARL version and for the

operational modes found to b2 in complete agreement.

At the present time only printer plot outputs are available
for the ray trace and intensity mudes. Figure V-5 shows an example of
a ray trace output from TRIMAIN (the sound speed profile is also shown).
The bathymetry corresponds to a transition from the edge of a continental
shelf to a deep ocean basin., It should be observed that the effects of
the double sound channel of the sound speed profile show up clearly in
the ray trace. The coupling to the lower chennel occurs via multipath
conversion on the slope. This same bathymetry was also used, with
source and receiver locations interchanged, in the study reported in
the next subsection. Work is in progress to add a Calcomp »Hlot capa-
bility. The ray trace part of TRIMAIN is being adapted for use on
ARL's CDC 3200 as a ray tracing program, without intensity calculation
capability. This will prove a valuable diagnostic tool for the sloping
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bottom problem; the cost is low and the machine has ¢ short turn

around time.

In addition to TRIMAIN, the parabolic equation model has been
implemented. This particular version of PE treats the cases of range
changing sound speed profile and bathymetry and can also treat the case
of bottom loss which is zero below a specified critical angle (and
essentially infinite above it). Although this model is presently
running on the ARL computer, the st.orage requirements are such that
nearly all output manipulations must be handled by a separate program.
Output features include a complete map (printer plot) of the sound field
at all depths and ranges along with the bathymetry, printer plots of
intensity versus range for selected receiver depths, Calcomp plots of
intensity versus range, and a range filter which may be applied to

either plot type.

Work is now in progress to convert the program to run on the
UT CDC 6600 machine. This is being done for two reasons: (1) to use
a larger FFT which will permit application at higher acoustic frequencies
and/or larger water depths, and (2) to obtain additional accessible
storage which will be used to add features such as depth average to the

program.

Figure V-6 shows a typical output from the present implementation
of the parabolic equation model. The bathymetry and sound speed profiles
are the same as for the trace given in Fig. V-5. The receiver depth is 18 m
and the source depth 715 m. The output shown here is unfiltered and the
epparent multiple valuedness results from the compression of a number of
points into one range interval by the printer plot routine. The con-
vergence zone structure of the intensity is clearly evident as is the

highly detailed fine structure characteristic of a wave theory.
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2, Application to a Specific Problem: Slope Enhancement Theory
and Experiment

Although much of the work on the sloping bottom problem is
of a hypothetical nature, i.e., sensitivity assessments without
reference to a specific experiment, the large amount of acoustic propaga-
tion duta acquired in recent years allows meaningful comparison of the
models and specific experimental results. Several sets of experimental
data have been examined for slope effects. One such piece of data has
shown a strong slope enhancement feature. These data are shown only
to encourage the examinetion of model runs to determine the important
parameters of the problem. Detailed comparison model runs and dats will

be made at a later stage in the study.

Figure V-7 shows some 93 Hz propagation data from a recent
exercise in the Northeastern Atlantic., The receiver was located at
zero range on this plot and at a depth of 715 m. The track of the
continuous wave source, at a depth of 18 m, passes from deep water, over
the continental slope, and into the continental shelf region. The
bathymetry and sound speed profiles are shown in Fig. V-8 with the
receiver located at the range point marked "B". The obvious peak in
the data, centered at approximately 190 nm, corresponds to a source

location at approximately the top of the continental slope.

For model calculations relevant to this situation, the
bathymetry and sound speed profiles were modeled as shown in Fig. V-9.
The seme sound speed profile was used throughout the track since there
appears to be little variation over the range interval of primary

interest.
Figure V-10 shows the results of several TRIMAIN runs using

this model bathymetry and profile. To determine the maximum possible

slope enhancement that could occur in these circumstances, the slope
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itself was made to he alternately a perfect reflector and a perfect

absorber. All other regions of the bottom were modeled as possessing
a reflection coefficient with a critical angle of %° with zero loss
below this angle and 3 dB loss above.

Several important features are shown in the curves of
Fig. V-10, as follows.

(1) All receiver depths show a slope enhancement with the
enhancement increasing with decreasing depth. The 18 m location is

just inside the surface duct which ends at 20 m.

(2) The enhancement begins at a location corresponding to
approximately 40% up the continental slope and peaks at the top of
the slope.

(3) Although the "enhanced energy” decays with distance
beyond the top of the slope, the decay rate is nearly the same in all
cases. The apparent increase in this rate with increased receiver depth
is actually due to differing slopes of the unenhanced curves. The
decay of the enhanced energy is probably a manifestation of multipath
conversion to steeper ray paths which suffer more loss when they reflect
from the bottom. In the loss model used for these calculations, this
amounts to conversion from below to above critical angle for the bottom
encounters. Thic model is probably most useful for examining some
features of the propagation in the deep water and over the slope.
Accuracy of the results of this ray theory model in the shallow water
portion of the path are still to be tested.

The same bathymetry and sound speed profile were used in a
series of runs with the parabolic equation model. TFigure V-ll is a
plot of transmission loss versus range. The corresponding bathymetry
is also shown. The bottom loss was modeled as having a 5° critical

angle (with zero loss below this angle) everywhere except on the steep

98




DEPTH (M)
] 1000 2000 3000
:-g TIPTTTOT TP ITI TV PPV
E
L :‘z

s Ees

32y 1
-8
8
o FIGURE V-11
TRANSMISSION LOSS AND
E ASSOCIATED BATHYMETRY
2 ¢ VERSUS RANGE
2~
g &
8
-8
8
9
8

(T T T T T T T T T Y P e T e T T T T O

09 = po1 031 oM 091
(80) SSO7 SNUML

340718 NO 3TONY WOTLIND 33930 91 {T300W NOILHND3 317084

BS-76-165
99




Suvrgmn

Wi, sy

slope (170 to 180 nm) on which it had a 20° critical angle. The slope
enhancement is similar to that shown by the TRIMAIN model. The differ-
ences between the PE and corresponding TRIMAIN model runs are (1) with
the PE model it is not possible to obtain a perfect reflector at all
angles, and (2) above the critical angle the TRIMAIN runs were made
using 2 3 4B loss, whereas in the PE model the loss is 50 dB. The raw
parabolic equation output has been range filtered using a 2 nm window
(equal weighting) and a step size of 0.5 nm.

Figures V-12 through 14 show the results of several parabolic
equation model runs for the cases of 0° (perfect absorber), 5°, 10°, and
20° critical angle on the continental slope with a 5° critical angle
elsewhere. The three figures are for receiver depths of 18, 91, and
149 m, respectively, the seme depths considered in the TRIMAIN model
study. The propagation loss curves are displayed with 20 dB offset per
curve for grephic clarity. It can be observed that the enhancement
increases with decreasing receiver depth. Also, it is clear from any one
of these figures that the energy encountering the slope and contributing
to the field beyond the slope does so largely at angles belon 10° or 15°,
In other words, there are only small differences between 0° and 5°
critical angles and between 15° and 20°, but between 5° ad 15° the
differences are large,

Figures V-15 and V-16 show a corresponding calculation of
transmission loss versus range, for 18 m, 91 m, and 149 m receiver depths
and 0° and 20° critical angles on the slope with source depths of 715 m and
2467 m, respectively. The receiver depth dependence of the enhanced

energy is much less in the case of the deep source.

Unlike the TRIMAIN model runs, the T15 m source case does not
display a decay of the enhanced energy to the level of the unenhanced
case. A single TRIMAIN run, using the same bottom loss model as used

in the PE runs (50 dB loss above 5° in the shallow water regime) shows
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FIGURE V-16
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%' only & very small increase in loss beginning just beyond the top of the
e slope. The structure and the flattening of the curve shown by the PE
model runs are not present in the TRIMAIN runs. Generally, the two
models seem to be in good - wlitative agreement in the parametric

dependence of the enhancement on receiver depth and bottom loss critical

angle on the slope. The mejor disagreement arises in the shallow water
regime.

Continued use of such tools in sensitivity studies for sloping
bottoms will scrve the dual functions of revealing the capabilities

and deficiencies of existing models, and of gquantifying the sensitivities.

c. ther Theoretical Approaches: Feasibility Studies

In addition to the computer model approach just described, a
more analytical approach was also taken. The purpose of such an effort
was twofold: (1) to obtain tractable analytical tools which would yield
., some informetion about the sloping bottom problem, especially slope
enhancement, without actually solving the entire problem, and (2) to
provide approximate solutions, whose regime of validity is known, and
to use these solutions to test more detailed computer models, such as

those just discussed,

1. A Unified Approach to Propagation and Scattering Studies

An initial investigation was made of the feasibility of using
the integral equation approach of Vekua.5 and Kupradze.6 This approach
uses as a fundamental solution the Green function for unbounded media
and then fits the appropriate boundary conditions in a self-consistent
way using integral equations. In the usual ocean geometries there would

be two coupled integral equations.
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A primary advantage of this approach is that the resulting
dual integral equations, after exploiting all available symmetries,
may be more susceptible to approximation or numericel integration than
the corresponding differertial equations (wave equation). Experience in
other areas of physics such as many-body theory and quantum scattering
theory lends credence to this belief (although nothing in such experience

suggests that such a method would be simple or easily carried out).

Another virtue of this approach is that it would verify
propagation theory and scattering theory in such a way that propagation
over & rough bottom ocean would pass smoothly into scattering from a
rough ocean bottom as the sea surface was moved away toward infinity.
Such & unification would be a considerabie advance as it would clear
up much of the confusion about surface effects in propagation. A specific
example of this type was in fact worked out: the case of water bounded
above by a flat pressure release surface and below by a statistically
rough pressure release surface. For vanishing roughness the usual Green
function was in fact recovered, and when the water depth became unbounded
the usual scattering theory results for the coherent field were obtained.
Analysis of the finite depth-rough surface case led quickly into the

further reaches of multidimensional Wiener-Hopf theory.

The complex nature of solutions to be used in this approach
prompted us to explore other possibilities. As a general recommendation,
the dual integral equation approach seems worth pursuing and with con-

siderable effort it could result in a significant breakthrough.

2. Mode-Mode Coupling Theory

Another possibility that was investigated was the mode-mode
coupling theory described formelly by Piercel and Milder.2 Unlike the
previous (dual integral equation) theory where mathematical under-
pinnings are secure and well founded, mode-mode coupling theory is

essentially based on an ansatz, which, in real problems, can never be
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true but may be an adequate spproximation. Systemetic efforts to
exploit this approach, especially in the case of range variable bathy-
metry, are limited.

The basic idea of the apprcach is easily understood. With a
rectangular coordinate system in which the z-axis is measured downward
from the sea surface, one first presumes that at a given range location,
(x,y), the depth separated wave equation can be solve?l for the normal
mrodes ¢n(z;x,y). It is then asserted that the solution to the range
changing problem is given by m(x,y,z)=wn(x,y)¢n(z;x,y), where the Wn
have yet to be determined. Upon assuming that the wn are orthonormal
on the interval (O,H(x,y)), where z=H(x,y) is the ocean bottom, sub-
stitution of this assumed solution of the original wave equation yields
a set of coupled differential equations. In principle this formulation
can treat either range changing sound speed--for which it was developed--
or range changing bathymetry, or both. In subsequent discussions it will

be assumed that the sound speed does not change with range since this

defines the basic sloping bottom probiem without additional complications.

Before considering the possible application of these ideas
to the problem at hand, five important points concerning the basis of
this formulation need to be discussed.

1. Concerning the fundamental ansatz, if the velocity
potential ¢ satisfies the general impedance cendition ¢n+7(a¢n)/8z=0
on z=H, then the Py form a complete set on this interval. 1In this
case, which includes pressure release and rigid surface, the assertion
about expansion of ¢ is trivially true since the wn are nothing more
than the inner product (mn,mwn), which is to say the coefficients in
the expansion of ¢ in a complete set {¢n].

2. In the slightly more realistic case defined by the
boundary condition ¢n+7(8¢n)/an=0 on z=H where d/dn is the normal

108

e o o < e




L gbe

derivative, the boundary condition itself is nonseparable and the
partial separation effected by the product 7n¢n cannot be carried out.
In the case of a constant slope this point can be evaded by redefining y
and thereby make a return to the case considered in (1).

3. In the two fluid case there is always a continuous
spectrum of eigenfunctions in addition to the discrete ones considered
here. Moreover, the eigenfunctions of the two fluids taken separately
are not complete in their respective domains. Even though in & range
independent environment the continuous spectrum can be ignored at long
range, it is not obvious that coupling between the continuous and the
discrete spectra is swall in a range changing environment. Physically
it seems quite plausible that a single discrete mode, upon encountering
a change in water depth, may couple some energy to the continuum and

thereby transmit energy out of the water column,

L, In any case, if one ignores these comments and proceeds
to apply the theory in a case when the bathymetry changes sufficiently
slowly so that an ur.zoupled mode assumption is valid, then a tractable
theory is obtained even in the case of a sound speed variable with depth.
The equations for the Wn separate and the remaining equations seem to

e amenable to solution by & variety of means.

5. A possible method of solution to the eguations for Wn is
to assume that in the [x,y] plane all changes are sufficiently slow to
permit application of ray theory. If this is done one obtains essentially

the horizontal ray theory of Weinberg and Burridge.7

In order to illustrate the type of problem which seems tractable
using this method, we shall consider the case of a constant sound speed
with both the ocean surface and bottom treated as pressure release.
Extension to a locally reactive surfacz defined by ¢n+7a¢n/az=0 is not

difficult. The sea surface is considered to be at Z2=0, and the bottom
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is defined by Z=H-§(x,y). The wave equation for the Green function
(V2+k2)G=-kn6(r-ro) is assumed to have a solution of the form

G = 2V (xy) 9 (25x,y) o ¥z sx,y) (1)
n

where the Tn satisfy the depth separated wave equation and are easily
found to be

0 (z3x,y) = [2/(H-§)]l/2 sin(k z) (2)

where kn=nnz/(H-§), end §&=¢(x,y). The (Wn} are easily shown to satisfy
the egquations

v, By,
m m - _ _
S;E— + ay2 + (k -k - )Wm = -218(x xo) &(y yo)
(3)
3, awn]
- !
Em[AmnVn*ansx—*Cmnsr ;
where the coupling coefficients Amn’ an, and Cmn are given by
/u-g 3, | Yo, "
A = ® 7 + @
mn ° m aX2 m By2 )
ot %,
= *
B =2 . dz @ ¥ =2, (5)
H-§ n ¢
= *
Cmn 2 . dz @ -d—y_— (6)

110




3
4
4
|

il

5 ' It should be noted that, due to the completeness of the [wn),

the development is thus far exact.

If the bathymetry is sufficiently slowly varying, one might
hope to ignore the mode-mode coupling terms, or at least regard such
an approximation as yielding the first texrm in the expressions of Wm in
powers of the slope {'. This approximation will now be introduced
together with the more specialized geometry where { is independent of vy,
as would be the case in a treatment of a continental slope. In this

case, Eq. (3) becomes

2 2
Y 3y o
-_Em * —_ém * (k -kmE-Amm> Vi = -2ﬂ6(x-xo) S(y—yo) ’ (D
ox dy
where A is -n by
2
H-¢ o
A (x)=/ dz © * —2 ) (8)
mm o} m Bx2

This equation can be immediately reduced to an ordinary differentisal

equation by teking a Fourier transform with respect to the y variable.

Thus,
dawm(xm) 5 o 5 17y,
— (k -k “-A =Y )Wm = -21 e 5(x-xo) , (9)
ax
where
@ iry
\'/m(X,V) = dy € Wm(x)y) ) (1-0)
-

and where a radiabtion condition has been imposed for |y|—+w.
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This is as far as it is possible to go with the formal
development; further progress can be made only by choosing a specific
foem for §.  Since it is not our purpose here to investigate any one
problem in detail, but rather to comment on the applicability of this
theory to a class of problems, this final step will not be carried out.
It should be noted, however, that at worst we now would need to integrate

Eq. (9) numerically after first computing Amn(x) in a specific case,.

It is reasonable to ask about the modification of the foregoing
development in the case that the bottom is not pressure release but
rather satisfies the impedance condition ¢n+7(5mn)/az=0. This is more
realistic than the previous case, since now the bottom would display a
reflection coefficient variable with angle (and frequency if desired).
In such a case the important problem of the interplay between {' and
the reflection coefficient could be studied. -

In the case of such an impedance condition, the only
modification to the foregoing results is in the vertical eigenvalues kn
which are no longer nn/H-Q. In fact, the kn are now to be determined by
solving the transcendental equations tan kn(H-§)=-kn7. Such an equation
can be solved numerically. It is imporbtant to note that 7 may be a
function of ¥ and y. In particular it would be possible to use a
different reflection coefficient on the continental slope than on the

deep ocean floor or in the continental shelf areas.

In short, then, to the extent that the bottom can be approximated
by an impedance condition it appears that considerable progress can be
made using this theory. Once the uncoupled mode solution is obtained
in a particular case it is a simple matter to obtain the first-order
corrections due to mode-mode coupling by perturbation theory. This line

of research will be pursued in the following year. -
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Other work has been carried out under this contract by
Claude W. Horton, Sr. This work has been chiefly directed toward
obtaining a useful solution for the wedge geometry (constant slope) i
the two-fluid case. Such a solution would have considerable practical

utility, not so much for the wedge itself but because a wedge could be

attached to a rectangular basin and thus provide a useful model of an
ocean basin leading into the continental shelf. This work is summarized

in Appendix D.
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APPENDIX A

FINDING EIGENRAYS IN A HORIZONTALLY STRATIFIED ENVIRONMENT

In propagation problems involving interpretation of specific influences
such as the magnitude of bottom interaction effects, it is often useful to
decompose the propagation and identify intermediate parameters, such as
bottom interaction angle, for specific eigenrays of the problem, Program
RANGER is designed to find the eigenrays (rays connecting a source and
receiver) for a series of receiver ranges given: a sound speed profile, a
source depth, and up to six receiver depths. It assumes the ocean surface
and bottom to be flat and specularly reflecting and assumes that sound
speed varies only with depth. The sound speed profile points are connected
by linear segments so that the sound speed gradient is constant between two
depths specified in the profile. For each range, RANGER computes the
minimum number of deep turning points, n, required for any ray to reach the
receiver range. It then finds all the eigenrays with n, n+l, and nt2 deep
turning points. For each eigenray the launch angle, bottom reflection angle
(if the ray is bottom reflected), receiver angle, transit time, and general
ray descripbtion (i.e., whether surface reflected, deep refracted, ete.) is

printed.

RANGER can also find eigenrays which pass through the sediment. For
these cases, the rays are traced downward until they reflect from the
perticular sediment layer interface of interest or until they turn around,

by refraction, within e sediment layer.
I. SOUND SPEED PROFILE
The sound speed profile in the water column may either be read
in directly as depth-speed pairs or computed from depth—temperature—salinity-

letitude measurements using Leroy's formula. The sediment profile is

obtained by reading in the layer thickness, speed at the top of the layer,
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and the linear gradient of sound speed with depth for each layer. The
depth and speed at each layer interface is then computed and added to the
water profile. VWhenever a sound speed mismatch at an interface occu s,

an artificial, very thin (0.1 mm) layer is introduced between the two real
layers. The sound speeds at the top and bottom of this artificial layer
are chosen so as to eliminate the mismatch. A ray which passes through
such a layer is refracted to exectly the same extent it would be if it
passed directly through the sound speed discontinuity. Similerly e ray
which turns around inside such a layer exits with the same angle as it
entered, corresponding to a reflection from the lower (real) layer of a
ray incident at less than the critical angle. These artificial layers are
introduced only as a programming convenience; the usual computations for

a ray traversing a layer (e.g., travel time) are suppressed except for the

angle change.

After the sound speed profile is assembled it is modified slightly to
account for the effect of the earth's curvature on ray paths. This is

accomplished by modifying each depth-speed pair in the profile as follows:

ZI

2(1 + z/(2Rp)) (A1)

n

c' = cRy/(Rg=c) (a2)

where z is depth, ¢ is sound speed, and RE is the earth's radius. Also,
the sound speeds are adjusted where necessary so that the sound speed
difference across e layer is never less than lO-6 m/sec (i.e., no zero

gradient layers are allowed).
Finally, new points corresponding to the source depth and up to six

receiver depths are inserted in the profile. The sound speeds at these

depths are obtained by linear interpolation.
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II. RAY CALCUILATIONS WITHIN A LAYER

For a ray traversing a layer we are interested in computing the
entrance and exit angles, Gi and Gf, the horizcntal range displacement,
Ar, and the transit time (Fig. Al).

The d.rivations which follow are constructed to work for upgoing &as
well as downgoing rays, and for rays which turn around within a layer.

In the latter case, 6f=0.

The angles are related by Snell's law:

cos 0
cos 8 source

c

P . (A3)

c
gource

The ray path in a layer of constant sound speed gradient is an arc of
a circle, so the range displacement can be found by

Ar = Rlsin 6, - sin eil . (AL)
The layex penetration, h, is given by:
h = Rlcos 9, - cos eil , (85)

where R is the radius of the arc. For a nonvertexing ray, h is the layer
thickness. Combining Eq. (AlL) with Eq. (AS) yields

sin ef - gin 61

Nr =h . (A6)

cos ef - cos 9i
Computationally, this is & poor formula because cancellation errors occur

when 8:~6f. However, it can be rewritten with the aid of trigonometric
EN

identities in the form:
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cos 8, + cos @
-‘
Ar = h : L

’ (AT)

sin 6, + sin @
i £

vhich is the formula used in RANGER. The transit time, At, is given by

s
_ ds_ _ dz ; (48)
el A O] _/)hc(z)lsin 5(z)]
where s is the pathlength. But, by Eq. (A3),
|sin 6] = V1 - cip2 . (A9)

Combining Eqs. (A8) and (A9) yields

dz - A10)
/c:I c(z) \/l - c:2(z)p2 (

c(z) = c, + g(z-zi)

ot

de = gdz
c
At = -:E/f——————--‘ic
& c, c\/l-cp
22
=}-zn31+,/l-cip
g c. - 2
:Ll+,/l cfp
(d 1+|sin6|
At = |% (£ 1 , (A11)
g cil+|sn.n6f|

where g is the sound speed gradient in the layer.

121

I ' At S




E bk ¢ an

III. RAY CLASSIFICATION

Since the number of possible eigenrays for a given configurstion of
source, receiver, sound sweed profile, and receiver range mey be infinite,
it is nececssary to classify them so that the ones of real interest can be

selected. RANGER classifies rays according to the formule
= o *
r(es) nDc(GS) Dl(es) De(es) s

which defines the ray range r in terms of the number of deep turning
points, n, the cycle distance Dc’ the source angle, es, and the

source and receiver range segments, D1 and Dé' Dl and D2 are simply the
range displecemenss associated with those segments of the ray which lie
ebove the source and receiver (see Fig. A2). To calculate Dc’ Dl’ and
D2 the ray is first traced through a half cycle, from the point at which
it reflects or refracts at or near the surface to the point at which it
reflects or refracts at or near the ocean bottom (or one of the reflecting
sediment layer interfaces). The range displacement, Ar, for each layer
penetrated is computed and tabulated. Then Dc’ Dl’ and D2 are computed
according to the following expressions (see Fig. A3):

.

D, = Z_;I Ory (A12)
1=ip
Tsrep-1
Dl = Z;I ory (A13)
1=
Tpovr-1 .
D, = .Z pry . (a1k)
1=IT

The total range for given n and given signs of Dl and D2 is calculgted for
specified angles of the source subject to the following definitions and
restrictions.
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1. A deep turning point refers to either & reflection or a refraction.
The depth of penetration is limited to the depth of a given reflecting

5 b R S - T

layer. The ocean bottom or deepest subbottom layer is always considered
reflecting.

2. The range could be negative if n=0 for some combinations of the

o e et el inse? bt o b

signs of D1 and D.; this is physically meaningless and so these combinations
are disallowed.

Y 3. The range is undefined (and not computed) for rays which do not
: penetrate to the receiver depth.
This total range, when computed for several angles of departure of

the rays at the source, can be used to construct range versus source angle

i b

curves (r-8 curves).
IV. RANGE-ANGLE CURVES

Shown in Fig. Al is a set of r-6 curves for the profile of Fig. A5
with n=2, a source at 410 m depth and a receiver at 1200 m depth. The
eigenrays are given by the intersections of the curves with the receiver
range linc., Note that

1. only positive Qs are used; the sign of Dl determines the true
4 sign of the launch angle;

- 2. for all angles less than 5.4410° r is undefined because the rays
don't reach the receiver depth for smaller angles;

3. the discontinuities in the r-6 curves (Fig. Al) at 8.0442° and
11.5765° are caused by features A and B in the sound speed profile
(Fig. A5);

4, the peak at 1%.3522°, vhere the r-8 curve is continuous but its
first derivative changes sign, is caused by feature C in the profile.

z ; When eigenrays found just to the right of the peak in the r-6 curve are
used for intensity calculations they produce false caustics. This problem
is an artifact of the straight line segment approximation; and

5. the slope change at 21.2800° shows the effect on the r-6 curves
when the rays begin to reflect from the bottom. TFor larger angles, r
decreases steadily until, at GS=9O°, r=0,
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V. CRITICAL ANGLES

As described above, certain features in the sound speed profile can
cause discontinuities and peaks to appear in the r-6 curves. These
irregularities in the r-8 curves must be taken into account when searching
for eigenrays since they are found by locating intersections of the r-6
curves with the receiver range. Fcrtunately, the angles at which dis-
continuities occur can always be found easily. This is not quite the case
with peaks (range maxima): though the angles at which they might occur
are easily found, it is not easy to elimingte false alerms. For this
reason RANGER treats all candidate peak angles alike, resulting in s
slight loss in speed.

To find ray angles at the source which are associated with
discontinuities or maxima (peaks) in the r-6 curve, RANGER starts at the
source depth and works down, sesrching for a sound speed, Cop which is
greater than any which have occurred previously. When such a depth-speed
pair is found, the associated angle is computed by

(A15)

cos QM = CSRCE/CM .
By Snell's law, this is exactly the angle at the source that is required
to cause a ray to turn around at the depth at which cy Occurs. Whether
this angle (GM) corresponds to s disconbinuity or a possible peak is
determined by examining the next depth-speed pair. If the speed there is

less than c,,, there is a discontinuity. Otherwise, GM is classified as a

J
possible pegk angle., After examining all profile points below the source
depth the process is repeated, this time starting et the source depth and
working toward the surface. The resulting set of angles (GM) are printed
out and sre designated as critical angles (not to be confused with the

critical angle associated with reflection from an interface).
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VI. RAY DESIGNATION

If a ray reflects from the ocean's surface, the ray is designated
SR; if it refracts near the surface it is designated SR¥. Similerly,
ocean bottom reflection and refraction designations are BR and BR¥,
respectively. Rays which penetrate the bottom and enter the sediment
are designated BP rather than BR or BR¥.

VII. EIGENRAYS

Before any eigenrays can be found, the sound speed profile must be
essembled and the critical angles (GM) found. Then, since RANGER is
completely automated, it must determine which ray classifications at
least have the possibility of containing eigenrays. This determination
is made by compubting the minimum number of deep turning points required
for a ray to reach the receiver range. Mathematically, this can be written

n, . D + D + D z receiver range s (A16)
MIN "eyny  haax Pmax

where Dc is the largest cycle distance the profile allows and D
MAX huax

and D2 are the source and receiver incremental distances associgbed
MaX

with Dc . The maximum cycle distance, Dc , 1s found by computing Dc
MAX MAX
for every critical angle (for discontinuities, two angles near and on either

side of the critical angle are used) and by taking the largest Dc encoun-

tered as D . 'The minimum number of deep turnings, n,..., is obtained
CMAX MIN
by rounding

receiver range - D - D
2
hax  Cuax
5 , (A17)
Cyax

up to the next higher integer. There is no guerantee that eigenrays exist
for Dy but this is the minimum number of deep turnings for a ray to
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potentially be an eigenray. RANGER finds the eigenrays which do exist
for NyTN? nMIN+l’ and n

and DE'

The method used to find the eigenrays of a given classification

MIN+2 and all allowed sign combinations of Dl

relies on the fact that the r-6 curves are always concave upward. The
range at each pair of adjacent critical angles (Gn) is computed (for break
angles, angles very near the critical angle are used). If the two ranges
obtained are both less than the receiver range then there are no eigenrays
between these two angles and RANGER moves on to the next pair of critical
angles. If one range is less than the receiver range and the other is
greater then there is precisely one eigenangle between the critical angles
end a standard root-finding subroutine is invoked to find it. If both
ranges exceed the receiver range then there are either no eigenangles
between the criticel angles or there are two. An angle is chosen roughly
halfway between the two critical engles and the range is computed at that
angle. If this range also exceeds the receiver range, then RANGER concludes
there are no eigenangles in the interval. However, if the range is less
than the receiver range then the rcot-finding routine is invoked twice to
find both eigenangles.

Table Al is the output from RANGER showing the eigenrays for the
configuration described in Section IV. Figure 86 is a ray trace of the

eigenrays which were found by RANGER for n=2.
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APPENDIX B

A BOTTOM LOSS MODEL BASED ON NUMERICAL INTEGRATION

Thic appendix describes a bottom loss (plane wave reflection
coefflcient) model based on a direct numerical integration of the deyth
separated wave equation. The important advantages of such an anproach
are fourfold:

1. essentially arbitrary sound speed profiles can be tested;

2. inclusion of a continuously variable density is trivial;

3. values of the sound field thrcughout the sediment layers are
always available for use as an edditional diagnostic tool; and

4k, numerical errors are relatively easily controlled.
After first discussing the mathematical basis for the model, a brief
description of t™e computer code is given. A more detailed explanation

of the code and algorithms used will be given in & later repoit.

A, Mathematical Model

The basic model (Fig. B-1) consists of an arbitrary number of (fluid)
sediment layers overlying a semiinfinite substrate whick can be either
fluid or solid. The sediment layers may have arbitrary sound speed and

density profiles; however, the substrate is treated as completely homogeneous.

The sound pressure field in the overlying wabter is assumed to be

P =

1k sinfz -ik sinfz| -iwht +ik x
o] o} o
o) Ao €

+Re e e . (B1)
where k.o = a/co, Kk, = kocos 0, and 0 is the grazing angle. Within each
sediment layer, say the jth, the sound pressure satisfies

c121=;l p'(2) ¢P, . ;
2" o,(2) @ ¥ [kj (2) - xg ]P.J‘ =0 (82)

dz
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where the density is pj(z), and the wavenumber kj(z) mey be compisx to
account for absorption. The second term in Eq. (B2) accounts for the
(possibly) variable density in the case when the direct effect of the
. gravitational field is ignored (see Bergmannl). In the substrate, there
! are two fields, compressional and shesr, which are most conveniently

described hy the velocity potentials @n(z) and wn(z) satisfying

: de@n 02 2
x s+ (k" x"Jo, =0 , (83)
\ dz
and
da‘yn 52 2 Li-
Rl SR (%)

c c . s ) c s
where k_ =w/c_~, k_=wfc_~, and c_~ and c
n n’ “n n n n

shear wave speeds in the substrate, the nth layer. With the time depen-
) ~iat

dence e

determined by the radiation condition to be

are the compressional and

and the z-axis measured as increasing downward, P and wn are

ik ¢ +ik x
¢ = An e n e ° e-lat N (BS)

y, =B e e et , (B6)

n
be complex.

2 1/2 2 1/2
with Knc=[# ¢ -K02] , K S={% S 'Ko?] and, as before, knc aend kns may

At a fluid-fluid interface the well known conbinuity conditions apply:

-1 [ - -1 t
Py Byl = pyyy T Py

at the interface . (B7)
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Upon applying these conditions at the water-sediment interface, taken as
z=0, the incident amplitude Ao can be eliminated and the reflection
coefficient, R, is found to be given by

P, @'
1k s8in 0 - oL
o) P, 9P
171 o
R = . (B8)
o. 9,
ik sin 6 + o1
o P, @
171 o

It is clear that only @.' (0)/¢1(0) is now required in order to compute R.
This ratio may be determined by solving the weve equation in each layer

and applying the continuity conditions plus a radiation condition in the
lower half space. If all n layers, including the substrate, were fluids,

there would be 2n unknown constants and 2n continuity conditions.

Before discussing how the wave equation is to be solved in each layer,
it 1s necessery to examine the continuity conditions for a fluid-solid
interface. These are continuity of the normal component of velocity,
continuity of normal stress, and continuity of tangentigl stress. Since
the tangential stress in the liquid vanishes, so must the tengential strese
in the solid. These conditions are given, for example, by Brekhovshikh.2
It will be convenient to deal with the pressure in the fluid layers and the
two velocity potentisls in the substrate. Denoting the shear and com-

pressional field by ws and G W have

flutd -1 optiid  o4q ¥ . O (89)
Yz T dwp =V % "% ’
2
. Py, Fy
fluid _ fluid _ solid _ -1 S 8
2z i = 0%z ! [ksvaw + 2ug <aze 35 ; (B10)
X'z
2 2
o fluid _ 0=g solid _ o ¢ s + 0 \Vs - 521;;8 (B11)
zX T YT Tax - © oxoz 32 322 ?




?. ’ where ¢ is the stress tensor, and ks and b, ere the usual Leme’ constants.

Upon reintroducing our layer numbering convention (water: @,
1+ e+ 9Py qs substrate: @ , wn) and using Eqs. (BS) and (B6),
then Eq. (Bll) may be solved for ¥, and thereby eliminate y_, and its

derivatives, from the problem. After some simple algebra, one finds

sediment: P

B,y = (1009, (Fs,) (B12)
Pn-l' c
-, ofap,) = ~te0, ", (813)
where P and Q are given by
s2
. k
Q= —Pe (B1k)
kS - ©
) n o
[ 2 2
\Kns 'Koe) * !moeKnSKnc
P = n . (B15)
) S
n

It should be noted that if cns=0, that is, the substrate is a fluid, then
Q=P=1, and upon using -iapn¢n=pn and -iwpn'=pn'/pn, cne obtains the usual
continuity conditions involving the pressure.

This completes the specification of the mathematical model and its

boundery conditions.

B. The Numerical Integration Bottom Loss Model

The basic idea behind the numerical integration model is now easily
- grasped. Having obtained boundery conditions in the form given in

Egs. (B12) and (Bl3), one simply assumes @,=1 and thereby obtains p,_,
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and pn-l' at the bottom of the lowest sediment leyer. Knowledge of
pn-l(Hn-l) snd pn-l'(Hh»l) together with the differential equation,

Eq. (B2), specifies an initial value problem which mey be readily solved
numerically on a finite interval, This procedure is repeated upward
through all sediment layers until finally @l(o) and @l'(o) are obtained.
The reflection ceczfficient R and the bottom loss -20 log10 IRI are then
easily computed using Eq. (B8).

Program BOTLOSS (Fig. B-2) was implemented on a CDC 3200 computer. It
reads in physical parametexrs which completely specify the system, computes
reflection coefficients for specified grazing angles, and then produces
printer or Calcomp plots of reflection coefficient versus angle on either
2 linear or logarithmic (&R) scale. A printed tabulstion cf calculated
values is also generated. BOTLOSS can also print out the wavefield through-

out: the sediment layers for any specified grazing angle.

At the time of this writing BOTLOSS can use any of the following
depth dependent functionms.

! p(0)
p(z) = |
l pf0) + 8,2 where g, is a constant gradient
c(0)
C(Z) = c(O) + gcz, where 8, is a constant gradient

c(0)/V1- 2g fc(0) .

The program is structured so that the extension of this repertoire of
functions is easily carried out.

The method used to solve the differentisl equetion is a Runge~-Kutta
scheme devised by E. Fehlberg. This variation on the classical fourth
order scheme is a relatively slow but stable method which is capable of
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continually adjusting the integration step size to meet specified local
(one step) error requirements (see Shampine and Allen). Error incurred
during the integration process is the dominant source of error in the
calculation of the reflection coefficient, so it is vital that a suffi-
ciently stringent local error requirement be specified to guerantee an
acceptably small total error. Since the global error is determined by
the local error (finite word size roundoff error is expected to be negli-
gible in this problem), it may be possible to provide a running estimate
of total error. If so, then future versions of this program will provide
estimates of the global error in the tabulated output.

Verificaticn of the model has centered on comparison of its
predictions with those made by models which assume p(z) = constant, and
c(z) = constant or, c(z)=c(0)[l-2gc/c(0)]"l/'2 (the pseudolinear model)--
assumptions which make exact solutions possible. No discrepancies greater
than a few hundredths of a decibel have been observed. In any case, since
the global error is controlled, it is always possible to obtain a desired

overall sccurecy simply by requiring a sufficiently small local error.

An ultimate 1limit to this procedure is imposed by finite word size
and resultant roundoff error, but it is not expected that this limit will
play a role in present applications. This linkage between local and global
error has been explicitly verified in comparisons between a numerical
solution and & numerical evaluation of an analytical solution for the

cases of a constant sound speed and the pseudolinear model.

An important shortcoming of this model is the long integration time
required to solve the differentisl equation. This effectively limits use
of the model to sediments no thicker than about 50 to 100 wavelengths.
Critical sections of the code are being converted to assembly language,
but this will not reduce execution time enough to allow investigation of

significantly higher frequencies or thicker sediments.
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A hybrid numerical/WKB technique, now under investigation, may
significantly reduce execution time.

Additional improvement will include adding the capebility for
specifying c(z) and p(z) by a sequence of discrete points (pi(zi),ci(zi),z
rather than through an assumption of a functionsl form. This modification
will then permit examination of cases when c(z) and p(z) are only approxi-
mately linear due to the distance required to establish a constant

gradient.
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APPENDIX C

HIDDEN DEPTHS: ACCEPTABLE IGNORANCE ABOUT OCEAN BOTTOMS

by
A, 0. Williams, Jr.

Normal-mode analysis of underwater-sound propagation in principle
requires knowledge of pertinent physical parameters at all depths in the
water and the bottom material--an unattainable omniscicnce. We present
a method for determining the maximum depth to which this knowledge is
necessary in order to hold the fractional errors in mode eigenvalues to
prescribed limits. Let hn represent a vertical distance below the lower
turning point of the nth-mode solution. Insertion or removal of a horizontal
plane reflector, at this depth, alters the mode eigenfunction and there-
fore the eigenvalue En. The fractional error AEn/L’n is a calculable function
of hn; this error being stipulated, h" can be found. The calculation need
be made only for the highest mode that contributes significantly. Con-
versely, if all parameters are known to depth h, the conscquent errors can
be found. Two examples axe analyzed, with simplifying restrictions: deep
isovelocity water; low frequencies; many modes; bottoms that are isovelocity
(the Pekeris case) or have a positive gradient of sound speed. For
fractional errors of 10-4--10-6, h is a few acoustic wavelengths. In each

example, bottom absorption has little effect on the result.
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Introduction

In principle, wave-theoretical analyses of underwater sound propagation
require complete knowledge of sound speed, absorption coefficient, and
density everywhere in the water column and the bottom material. This is
true even when standard simplifying restrictions are imposed: (1) a CW
point source of single frequency; (2) cylindrical symmetry about the vertical
axis through the source; (3) constant water depth; (4) parameters varying
only with depth; (5) no scattering; and (6) neglect of the near field
(described by a continuous set of modes or a branch-line integral)., Each
of these restraints can be relaxed, but the problem thus restricted is
usually a good starting point, and we adhere to it throughout this discussion,

Satisfactory data may often be available for the water column, but
certainly not for the whole bottom material. We therefore secek a criterion
for a depth, in the water or the bottom, below which the physical parameters
of the "hidden depths' affect the solution negligibly. A general approach

is presented and two examples are discussed.
I. The normal-mode solution

Given the restrictions listed above, the acoustic velocity potential
¢(r,z)--the factor exp(-iwt) being suppressed--or equally well the acoustic

pressure can be written in cylindrical coordinates r,z:

N ik r
$(r,z) = const. r-1/2§: kn-l/2 Zn(d) Zn(z)e n . @)
n=1
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The mode eigenfunctions Zn, at source depth d or field-point depth z,

satisfy the equation

2 2 2 2
d°z /dz” + [k"(z) - k, 1 z = 0 , (2)

at all depths in the water and the bottom. Here N is the number of the
highest discrete mode; k(z) is w/c(z) with w the angular frequency and c(z)

the sound speed. The constants kn2 are the eigenvalues (kn, w/kn, Xn as

defined by Pekerisl, or X 2 cap be so regarded, instead). ECquation l

embodies the asymptotic expression for a Hankel function of knr, as is al-

most always sate when the near field is neglected.

If at any depth z the sound speed and/or the density change practically
discontinuously, acoustic boundary condicions must be applied at the
interface. The net result of all such steps is an eigenvalue equation from

which kn2 can be calculated. ‘The effects of absorption can be incorporated

by assigning a suitable imaginary part to k(z).

Equation 2 always has two independent solutions that depend in detail
. 2 . . .
upon the local properties of [k™(z) - knz]. Linear combinations of the
two solutions can be chosen to make Zn vanish at the sca surface (taken

here as at z = 0, with 2z increasing downward), and at z = o,

It is widely accepted that unconsolidated bottom materials display

sound speceds increasing with depth; far enough down, morevver, the material
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must be hard dense rock. Ilence in any given problem we can assume that for

each mode there exists a depth z = Cn--the lower turning point of Eq. 2--at

which c(z) has become large enough to make [kz(z) - knz] turn from positive
to negative and remain negative for z > cn. Then Zn(z) for z > Cn is
sonvex toward the axis, and to satisfy the radiation condition at infinite
depth we choose the unique form of Zn that monotonically approaches zero

as z +«, For values of z < Cn (with localized exceptioné, as in the
barrier underlying an acoustic duct), [kz(z) - knz] remains positive; Zl

is concave toward the axis and in general is an oscillatory function, a

standing wave. Ircidentally, Cn may lie in the water column.
1I. Locating the "hidden depths!

Just above z = Cn’ let p1 be the density and Un be the properly chosen
Zn for Eqs. 1 and 2. Just below Cn’ let p2 be the density and Vn’ wn be
two indepcendent solutions of Eq. 2, so chosen that, monotonically as z =+ <,

v.l + 0 and wn+ ©, Ordinarily v and w vary exponentially or faster, with

increasing z.

At z = cn, as at any other intcrface, the acoustic conditions are
continuity of two quantities: (a), the acoustic pressure, and thercfore
p¢, and therefore each Zn; (b) the z-component of acoustic particle velocity,
and thercfore each Zn' = dZn/dz. Because wn does not satisfy the radiation

condition at iInfinity, we write the acoustic conditions in terms of u and
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v at z = C"- Upon taking the ratios of the two equations, we obtain

(un/un')Cn = 6(vn/vn')Cn ) (3)

with § = pz/pl (which might be unity). To a degree, Eq. 3 is only symbolic,
although correct. The form of u appearing therein depends on physical
parameters everywhere above Cn’ and of vn on those below cn. It will
somctimes be preferable (Sec. IV) to express Eq. 3 at some z < gn. However,

the general procedure will be unaltered.

Next, we consider somc greater depth, z = Cn + hn’ at which a horizontal
pressure-release plane can be inserted or removed, With this rcflecting plane
inscrted, Zn(z;n + hn) has to vanish. Therefore, vn(z) for z > Cn must be

replaced by Vot nwn, with n chosen to ensure that

(vn + nwn)c R 0 . (4)
n n

What happens to the other Zn'S is of no concern at the moment. Equation 3
is replaced by

(un/un')cn ) 6[(Vn * nwn)/(vn' ¥ nwn')]cn . ®)

Because of the behaviors of v and w below Cn’ proper choice of hn will make
n as small as may be desired. Then Eq. 5 approaches, similarly closely, the

form

(un/un')Cn = §[1-n W(vn, wn()/(vnvn')]Cn(vn/vn')(,;n . (6)
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W is the Wronskian of the independent functions v and W It can be

seen that vn and wn need not be normalized.

A rigid plane, upon which Zn' vanishes, could be used in place of the
pressure-release plane. The value of n would be altered, but the new n
can also be made arbitrarily small, and Eq. 6 still holds. With either plane,

of course, the value of (un/un') at cn differs from that satisfying Eq. 3.

Equation 3 leads to an eigenvalue--e.g., kn2-~and Eq. 6 to another
cigenvalue, slightly alteved by a multiplying factor (1 + An), in which
An depends upon n and other quantities in Eq. 6. This relationship connecting
An and n can be found; the fact that n is very small may ease the task.
To complete the formal problem, we specify a numerical value for An, ex-
pressing the greatest acceptable fractional error in the eigenvalue. The
known or estimated precision of available physical data may guide the choice
of An. From An we find n, and finally hn from Eq. 4. It is convenient
although without physical significance to regard 8[(1-n . . . ] in Eq. 6 as
an altered density ratio. This artifice allows § to serve as a "tracer" of

[. . . ], in the process of relating An and n.

There is no need to find Cn + hn for all modes. If the modes are nurbered
in the usual fashion, so that kn2 decreases as n increases, vy and wn
change most slowly, with increasing z, for the highest mode, numbered N.
Consequently, CN + hN is an upper bound on the depth that we want to find.
In many cases, the acoustic absorption coefficient for mode n increases with

n. Sometimes it can be estimated confidently that all modes with N > n > n,
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are attenuated too rapidly to contribute significantly at the horizontal
ranges of interest. Then Cn + hn is a safe upper bound.
0 0
The whole calculation could be done in reverse. If the necessary
physical parameters are known to some depth 2, > Cn’ but not below, this

procedure can be used to find the maximum error in the eigenvalue of the

nth mode.

We now explore two simple examples, in each one treating the water column
as isovelocity, the bottom material as a fluid, and the water and bottom
densities as constants. In Example A, the bottom sound speed is a constant
exceeding that in the water--the standard Pekeris caael, although not
necessarily limited to shallow water‘and low frequency. In Example B,

instead, there is a positive gradient of sound speed in the bottom. Effects

of absorption are discussed in Sec. V.

III. Example A: isovelocity bottom

The water column, of depth H, has censtant sound speed <, and density

P, the bottom material, a fluid half-space, has constant ¢, > ¢ and

b
pb > pw. We define twe positive dimensionless quantities:l’2
_ 2 2,1/2, - 2 2,1/2
X, = ll(kw kn ) RN H(kw - kb ) . (7)
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In this example, Cn equals H, for all n. The functions u, v and w can

be expressed thus:l’2

un(z) = sin(xnz/H), 0 <z <H; (8)

2 . 2,1/2

vy wn = exp[;(xC ~xn ) (z-H)/1], z > H. (9)

The negative sign goes with v, the positive with w. With no reflecting

plane, the eigenvalue Eq. 3 isl’2
X -1 tan x = -6(x 2_ 4?2 -1/2 . (10)
n n c n
By using bqs. 4 and 9, we find that
2 2.1/2
n = -exp[--Z(xc X ) / (hn/H)] R (11)

and that [l-n . . .] in Eq. 6 is (1 + 2n).

We consider only many-mode cascs and modes for which n = N > > 1. The
modes are so ordered that X 41 > X Equations 7 and 10, together with the

Appendix of Ref. 2, show that xn is an angle in the second, fourth, .
quadrant, starting in quadrant 2 for the lowest mode (n = 1) and increasing
by somewhat less than fo; each An = +1., Hence, successively larger xn's
"back up," clockwise, in the pertinent quadrants, toward an odd multiple of
/2. The largest X 2%y cannot exceed X5 if by charce the physical parameters
yield Xy = Xc, Xy also equals (N - 1/2)m. The normalization constant for
zN can then be shown to vanish identicallyl’z. (An equivalent phrasing is
that such a mode is not the highest in a discrete set but the lowest in a

continuous set of modes, which collectively affect only the near field.)
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Therefore, XN for the highest nonvanishing mode can be expressed as

Xy = (N-1/2) m+v, 0<v<m/2 s (12)

with N the largest integer satisfying xn < X For many-mode cases, V
is much less than m/2. Consequently, we can make these approximations in

Eq. 10: xN'l = [(N - 1/2)7]7Y; tan x, = -1/v; (xc2 - X 2)1/2 =

N N
(2x )-1/2 (xC - XN)-I/Z. The result is
ve 2z -@ena/xgMis (13)

which with Eq. 12 yields Xy
When the pressurc-release reflector is inserted at z = H + hN' § of

Eq. 13 is replaced by 6(1 + 2n); v is changed by Av = AxN:

Av = Bx = -20v; |qu| <<Tm . (14)

. . . . 2 . .
At this point, a choice of eigenvalue must be made; we adopt X which is

. . U 2
simpler for calculations and more conservative in its results than kn . The

outcome 1is

by = Bl B/x = () /%y = -(@v/NDn (15)
with v obtainable from Eq. 13. In magnitude, AN is sma'ler than (2/N)|n|.
Onc? the greatest acceptable numerical value of AN is specified, hN is
found from Eqs. 11, 13, and 15. For a rough assessment of hN’ we make
additional approximations. First, x, - Xy can range from just above zero
to somewhat less than T, as an average, we take X, = Xy = /2, and use it
in- Eqs. 11 and 13. Secondly, in (hN/H) of Eq. 11, we use.the empirical

relation |l = NKV, with the Aw the acoustic wavelength in the water.
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Then hN/)\w can be calculated for various values of N and A Pairs of

N'
numbers, in the order (AN, hN/Aw), were found for N = 25, 50, and 100 and
were then averaged over N to yield (10-4, 3); (10-5, 6); (10-6, 8).

if sz is chosen as the eigenvalue, converted from xN2 by use of Eq. 7,
the cquation corresponding to Eq. 15 is somewhat more complicated. For
the same three numerical values of AN’ the values of hN/Aw are smaller
by 15--30%.

As was suggested above, it may sometimes be desired to find hn for

o

n <N. IfN- n, < < N, Eq. 13 is probably still valid with n, replacing

N. If ny < N/2, a different approximate solution of Eq. 10 is availables.
IV. Example B: bottom material with positive gradient

The water column retains the properties of Sec. III. The bottom material,

still fluid and of constant density Py
speed; a typical value is +1 sec-l. We use a standard pseudo-linear gradient,

» now has a positive gradient of sound

K(2) = k F0-6G-H)1, 220 (16)

- , . -1
1 approximates a constant gradient dc/dz = 1 sec ~,

The value B = 1.3 x 10™° m
provided that z - H remains considerably smaller than 1/B8. Lquation 16
must be treated with caution, for,at (z-H) = 1/8, c(z) becomes infinite and
for greater z, imaginary. For the present we assume that a satisfactory
;" + hn lies well above z - H = 1/B. sz in Eq. 16 could realistically be
replaced by a value a few percent different, but this complicates the analysis

without adding to the illustrative effect.
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In the water column, Zn is still given by Eq. 8 with X as in Eq. 7.

| ) For z > H, we substitute Eq. 16 in Eq. 2, and change variable from z to Yy
e 2322 .
Yy, = ~M L kn - M(z-1)], z > H ; (17)
2
M=kB (18)

Equation 2 takes the form

2 2 _
d Zn/dyn B ynZ" =0 ! (19)

which has as independent solutions the Airy functionss, Ai(yn) and Bi(yn).
Since knz < sz always, y_ is negative at z = ll and for some distance

. below; Yy vanishes at z = Cn and is positive at all greater depths:

2) - (bNZ)-l X 2

a (20)

g -1l = M‘l(k 2k
. n w n

The proper solution of Eq. 19 is Ai(yn). This functions oscillates for Yq <0
and falls monotonically toward zero as Y, + o and therefore as z » «,

lence the depth cn given by Eq. 20 agrees with its definition in Sec. I.

Also, Ai(yn) is continuous with continuous derivative dAi/dz, thereby
satisfying the acoustic conditions at z = Cn (where § is unity). Since [Eq. 3
is automatically satisfied in this example, we find the eigenvalue equation

by applying the acoustic conditions at z = ll, not at cn. The result is

fx "1 tan x
n n

3 My i ey s (21)

_ /3.2 2 _ .2 .
) o lyn|z=ll MG - k) = By ’ (22)
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B = oudy 23 (23)

In standard notation, Ai' in Eq. 21 is dAi/dyn; Ml/sAi' is dAi /dz, which
is needed in the acoustic conditions. Evidently, for all z > H both u and
v of Sec. II equal Ai(yn). The independent solution is Bi(yn), which
oscillates for z < Cn and diverges toward + infinity as z + @,

In Sec. III, N and x, were set by the physical parameters, but that is

N

not so, here. We must establish meaningful values for N and x,,. In

N

particular, they must correspond to an acoustic field restricted to depths

z in which Eq. 16 still approximates a-constant dc/dz, to agree with geo-
physical facts. We start by arguing that, given a many-mode ficld in deep
water, at least the lower eigenvalues must approximate those of the Pekeris
problem in Sec. III. This is perhaps most easily seen by temporarily setting

6 = 1 and applying the WKB methodG. The Bohr-Sommerfeld integral that

establishes kn2 is

L2
/‘qk (2) - knz]l/zdz =(m-14mn=1,2,.... (24)
(o]

It turns out that (;n-H) < < H for n not too large, and therefore Eq. 24

is little changed by using il for the upper limit, which then gives the WKB
solution of the Pekeris problem. It follows from Eqs. 7 and 24 that x, %
We therefore try N = H/Aw, which is approximately true in the Pekeris problenm,

and Xy = Nw. Equation 20 yields

L-H=@R T =10n (25)
which when put into Eq. 16 leads to c(CN)/cw = 1.15--a physically reasonable
value and one only 2 or 3% above the lincar approximation. This choice of N

appears to be quite satisfactory.
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The same values, used in Eq. 23, show that Yy = BxN2 > 4,6 for
acoustic frequencies not less than 25 Hz. Consequently, asymptotic forms

1 of the Airy functionss can be substituted in Eq. 21, with an error no more

than 2 to 3%. The outcome is

2)3/2

tan x,, = -étan(wN + m/4); wN = Z(BxN /3 . (26)

N

Secking an approximate solution of Eq. 26, we write

Xy = nln - € tan Xy = -tan € ’ 27)

with 0 < € < 7 and n) an integer (n1 < N). Although €'s of 0, /2, or w
might satisfy the eigenvalue equation, these exact values are highly unlikely,
because any onc of them would require a precise combination of several physical
parameters.

Approximate solutions of Eqs. 26, 27 are fairly easily derived for €
near 0, w/4, u/2, 3n/4, or m. We indicate the proccdure for 82 < < n2/4,
the most plausible surmise when (cn - 1) < < Hl, and state results for the

other special cases. After tan XN in Eq. 26 is approximated by -€, wN

can be found:

= ()= 1/4) T+ e/6 = (n, - 1/4) 1 (1 + % £

Gm--i], n, = 1,2... . (28)

From Lqs. 26 and 28, we calculate Xy using the binomial theorem for powers !

of [ ]:

Xy 3'1/2[(3n/2)(n2 -y e 38(n, v (29)

With the pressure-release plane inscerted at z = Oy ¥ hN’ § in Eq. 29 is

to be replaced by 6[...]H, as in Eq. 6 (except that H now replaces CN).
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In [...]), Wis ﬂ-l; vaN' is (AiAi')“, and asymptotic formsS can be used
as they were to obtain Eq. 26. The result is that (1/6) in Eq. 29 is to
be multiplied by [L - 2n csc(ZwN + 1/2)], which (from Eq. 28) is (1 - nd/e).

Comparison of this result with LEq. 29 leads to
- 1
by = 872 (w2 (my - 1D 1vsm/ g - 1/0)]

= q xN/[Sn(n2 - 1/4)] . (30)

- . _ .2 2
Ihen with AN = A(xN )/xN we have

AN = 2n/[3n(n2 - 1/4)] <0.1n ; (31)

the inequality holds because n, > 2 forf> 25 Hz, as is found by calculating
BxNZ. The same result, AN < 0.1n, also holds for € near 7, € near /2,
|e - w/4} < 0.25 and |e - 3n/4] < 0.25. These approximations cover much of

the range of €, and there is no reason to expect markedly different results

for any other value of €.

Equation 4, with Ai and Bi for v and w, and with asymptotic values of

the Airy functions, gives

3/2

n= -1/2 exp(-4 v, /3) (32)

L _ . . . 4 1/3
Y is yN at z = CN + hN’ which from Eqs. 17 and 20 means that yh M hN'
Using M from Eq. 18, we obtain

-1/3 .
hN/)\w 2.7y, Aw / (A in meters) . (33)

With AN taken as 0.1n and with the numerical values of AN prescribed in

Section IIT, we find at £ = 25 llz the ‘combinations (10'4, 1.9), (10'5,

2.4), (10‘6, 2.8). The second entry in each parenthesis is hN/Xw; this

quantity increase slowly with frequency, as f1/3. Comparison with tabulated
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valuesS shows that even for the smallest Y encountered here (about 2.8)

the asymptotic form of Ai/Bi used to obtain Eq. 32 is in error by less

than 5%, a completeiy negligible discrepancy in view of our various approximations.
Two points of difference from Lxample A must be kept in mind, First,

in this example we have defined N, the number of the highest mode to be

considered, as N = H/Aw-—a reasonablc but not inevitable choice. Seccond,

h, is measured down from depth g!, not ll. Equation 25 shgws that the top

N
of the "hidden depths" lies below the bottom interface by a distance Az:

Az =2z -H=190 m + hN . (34)

At 25 Uz, tor example, Az is 5 or 6 times Aw’ with the numerical values of
|AN| used as illustrations. At higher frequencies, Az/)\w of course increases,

but Az itself decrecases toward about 190 m; i.e., toward CN - H.
V. Effect of including absorption

At the low frequencies emphasized heresand even at much higher frequencies,
absorption in the water column is too small to affect our discussion. In
this same low-frequency range, however, absorption coefficients in unconsolidated
bottom materials are much larger, and it appears that they incrcase approximately
as the first power of the frequency. lence their possible effects should be
considered. Sections I and II remain essentially unchanged, except for the
fact that bottom absorption leads to complex eigenvalues.

Returning to Eq. 7, we treat kw as real and incorporate bottom

absorption in Example A by writing

159

e st ety

bt et ¢ -




ST AT AT R VR g T TR T T TR R T S TR e o o e T R

_ s 2 2
kb = kbr + 1ab, ab < < kbr . (35)

. . . ‘o . 7
The inequality is justified by experimental results. Kornhauser and Raney

have analyzed the consequences; kn must also be complex:

kK =k +io;a’<<k 2
nr n n nr

n (36)

Except very near cut-off, @ is much smaller7 than ub. Using Lgs. 35 and 36

in Eq. 2, with k%(z) = kbz in the bottom, we find v ():

vn(z) = exp[-(knr2 - kbrz)]‘/2 (z - H))
k o -k a)
X exp[-i(knrzn- - b§)27§-(z -] . (37)
nr br

wn(z) has the same form, but with positive exponentials (see Eq. 9). It

3 . > > .
is always true that kw knr kbr’ also, kw rarely exceeds kb

say, 20%, but ab exceeds an by a much greater amount. Examination of the

r by more than,

complex exponential term in Eq. 37 shows that it has a positive argument for
z > H. That is, Eq. 37 represents an exponentially damped progressive wave,
directed downward; the presence of bottom absorption has destroyed total
reflection at the bottom interface. 1In contrast, W represents a progressive
wave directed upward, its amplitude diverging exponentially as z + =,

Use of these expressions for N and Wy with the help of Eqs. 4 and 7,
shows that n still has the magnitude indicated in Eq. 11 (except that the
real parts of X, and Xy are to be used). The only change is that n now

has a phase factor of unit magnitude. The remainder of Sec. III can be

repeated, with only the real parts of all complex quantities--including the

new n--and no appreciable change in hN/Aw is to be expected.
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It may be surprising to see no absorption of the downgoing wave, but

this results from our neglect of quadratic terms in o and a The vertical :

b’
attenuation of vy shown in Eqs. 9 and 37, will ordinarily far exceed true

absorptive effects. The main influence of «a,_ is, via an, an attenuation of

b
cach mode in the factors exp(iknr) of Eq. 1.
Example B(Sec. 1V) yields a similar result. We replace the real kw in

: , . . . 2 2 :
Eq. 16 by kbr + e, with k kw and @ < < kbr A of Eq. 17 becomes

br

complex. The Airy functions Ai(yn) and Bi(yn) continue to be solutionsS

of Eq. 2 after kz(z) and kn2 become complex. Also, the asymptotic expressions

for the Airy functions remain unchanged when Yn is complex. Therefore n

is still given by Eq. 32, although now 1 is complex with an un#ltered real

part and an imaginary part related to o, and o . The outcome is the same

as in Example A: n is practically unchanged in magnitude but acquires a

phase that depends on hN.
For z sufficiently exceeding Cn’ it is readily shown from the asymptotic

expressions used to obtain complex n that Ai represents a rapidly damped

wave progressing downward, whereas Bi corresponds to a wave progressing

upward but with an amplitude that diverges as z + =,
vI. Summary

A method has been presented for naming a depth, in the water or the
bottom material, below which physical parameters nced not be known because
they would have negligible effects upon the normal-mode expressions for under-

watcr-sound propagation., "Negligible effect" is defined by specifyfng the

161

e w o -

[




Lt o sty s

TR B A B s L RPN —

maximum acceptable values of the fractional errors in mode eigenvalues.
Provided that the near field is not considered, the calculation need be
made only for the highest discrete mode or, in some cases, perhaps for a
single lower mode.

Two illustrative cxamples have been analyzed. Each assumed isovelocity
water; in one example the bottom was isovelocity, and in the other it had
a positive gradient of soun¢ speed. TFor several acceptable errors, the
pertinent depths were calculated, in acoustic wavelengths, below the
turning point of the mode e:genfunction. Only ~any-mode cases, at low
frequencies in decp water, were treated, although the general method is not
thus restricted. The effects of bottom absorption were also considered and

were found to be quite small, in both examples.
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APPENDIX D

A FORMAL SOLUTION TO THE PROBLEM OF WAVE PROPAGATION
IN A HALF SPACE OF TWO FLUID MEDIA SEPARATED
BY AN INCLINED PLANE

by¥*
C. W. Horton, Sr.

I. TINTRODUCTION

In the case of constant sound speed, the wave equation is of course
jeparable in a multitude of coordinate systems. Of these, only the
wedge seems to offer promise of immediate applicability to relevant
propagation problems. It is well known that the wedge problem with
perfectly reflecting boundaries is exactly solvable in terms of Bessel
functions. However, in the case of one wedge boundary separating two
fluids (i.e., the bottom-water interface) the problem has never been
solved. This appendix outlines a formal solution to this rather prac-
tical problem and suggests a method for carrying the calculation forward

toward a specific numerical evaluation.

Before dealing with the two-fluid problem, it will be useful to
briefly review the simpler case of a single fluid medium. We suppose
a wedge geometry in which, for the present, the pressure is assumed
to vanish on the plane =0 as well as on the boundary @=0., The
coordinate system is cylindrical with the z-axis normal to the plane

of the figure. The wave

13 [ d 1 3® o2
== (r - +x|p=0
I LR

%
This appendix is based on an informal report by C. W. Horton, Sr., to
which the present authors added a brief introduction.
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is separated in all three coordinates by the solution

ik z
2

p = R(x) sin(ane) e ,

where ah=nn/a and R(r) satisfies the equation

o 2
1d d 2 2 n
T dr (I EE) k- kZ ) ;5' R(r) = 0 ’

which is just Bessel's equation. 1In the case that the source is located

at (ro,eo,o), the Green function is given by
1« ®
G =55 gg% S1n(a£9) 81n(an6n) ) dk,

1 ik 2z
[Jan( kx) Hén) (k) e Z] ,

max
min
discussed in detail, by Bradley and Hudiman.

where k 2!-—-ke-K 2 and r<?{ }r r . This solution was obtained, and is
X Z S Lo

The much more inberesting and potentially useful problem defined
by imposing an impedance condition, p+7(dp)/dn=0, on one or both wedge
boundaries, has never been considered in detail with reference to under-
water acoustic applications. ‘The theory of this problem, as well as
related integration techniques, is discussed by Felsen and Marcuvitz,2
Ch. 6. As before, such a boundary condition defines a problem midwey
between the case of perfectly reflecting boundaries and -the two-fluid
problem. It would seem desirable to explore this probhlem thoroughly
with view to the application to practical propagation problems.
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Recently a different attack on wedge problems has been proposed
by Uberall and co-workers, see for example, Graves, Nagle, Uberall,and
Zarur.5 These authors consider a mode-mode coupling approach where
the unperturbed problem is taken to be the rectangular ocean. Only

perfectly reflecting boundaries were considered by these authors,

With these background comments in wind, a method for treating the
two-fluid wedge problem will be outlined.

II. THE TWO-FLUID WEDGE PROBLEM

Suppose fluids 1 and 2 are located in the wedges 0s@s0 and OS@sw,
respectively, The plane surface Q:(O,n) is 'a pressure release surface.
We wish to write down an expression for waves whose periodic source is
at the origin and which satisfies the boundary conditions at @={0,q,)
and also the Sommerfeld radiation condition at infinity., Presumably
the solution to this problem will be sums or integrals over vV of expres-

sions such as

Medium No. 1. sin vcpHv(l)(klr) s (1)

Medium No. 2. sin p(x-9) Hu(l)(ker) . (2)

It is clear that the basic problem is the matching of the Hankel functions
along the ray ¢=0. It was thought that a viable technique could be
obtained by using "multiplication theorem" from Erdeli, Vol. II, p. 66,
which states

3,(nz) = A ) [z(l - )] Ty(2) v

n=0

Uhfortunately, when applied to Hankel functions there is no obvious

way to proceed.
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S. Banera:\.5 proposeo a similar problem for the wedge and suggests,
in effect, expanding H, (3) (x r) in a Taylor series in (k l) He
does not carry out this idea, and it does not seem promising since the

nth term in the Taylor's series is proportional to rn'Hv(l)(klr).

There is a more recent report by Karp and Sollfrey6 who solve a
similar problem by using a perturbation theory expressed as a power
series in a parameter p defined as p=k22-kl2. Now, for the ocean bottom
a normalized value of p will be near 0.#, so that 4 terms in the expansion
will be necessary for 2% accuracy. Nevertheless, their method will be

pursued in some detail.

Suppose we modify the wedge geometry by indenting the vacuum
surface ¢=(0,x) into a semicircle of radius a (to be determined later).
In expressions 1 ang 2 select only those values of v and p such that
Hv(l)(kla)=0 and Hu\l)(kaa)=0. There is a countably infinite set of

these values.

Each of these sets is complete and orthogonal in the sense that

© 0 (1) (1)
ar v H, (gr)H, (kr) =N 85 (3)

a X J .
/ ar vt Huil) (k2r) Hv:(jl) (k2r) = M, i3 (L)

a

See the paper by Cohen7 for an extensive discussion of the completeness
of these functions and of the convergences of expansions in terms of

these functions.

Thus any function H (1 )(k r) in the second medium can be expressed

& linear sum of funcbidns H, ( )(klr) suitable for the first medium,

:L
and vice versa.
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The difficulty with this suggestion is that a large number of
integrals of the form

® (1)
dr r Hvi(klr) H, (ky7) (5)

a J

must be evaluated to give the coefficients of matrices that must be
inverted. It does not seem that a closed expression for this integral
exists. This is, of course, a computational difficulty only, though a
serious one.

Now suppose that over the surface

r=a |, oOseosa (6)
there is a simple source
p = p_ sin VfPH(l)(k a) o 1% (1)
o % 1 :

Then we can find two sets of coefficients (Ai} and [Bj} so that the

pressure fields in media 1 and 2 (omitting e-10k) are

(l) ot (l)
py = P, sin(ve) H,™(b,r) + '21 A, sin(v,0) B, (k) (8)
L= 1

o]

P, = &= B, sin(ujcp) Huj(xgr) ) (9)

respectively, and such that
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Py = Py (10)

dp dp
pil BEE = p;l 353 (11)

where Pys Pp are the densities of the media.
The coefficients of the two expansions can be determined as follows.

Substitute Egs. (8-9) into Eq. (10), multiply by (l/r)Hv(l)(klr), and
integrate from a to «., This gives p

0
. -1 (1) .
P, sin(w) / o drr II\,(kLr) va (klr) + Apr s1n(vpa)

(12) '
where
% (1) 1)
C,s =/a ar rt va (x,x) Hu; (kr) (13)

N, is defined in Eq. (3) above.

Equation 11 can be treated in a similar way to give a second
equation for AP. When A.p is eliminated from these two equations, we
get one infir'“e set of inhomogeneous equations for the sequence of
unknown coefficients [Bj}. This analysis is entirely formal and questions
of the existence of solutions to the infinite set of equations must be
answered, questions of the convergence of the series 8 and 9 must be
ahswered, and a tremendous amount of numerical work must be done.
Finally, there is a question about the significance of the size of a,

which is so far arbitrary.
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The entire analysis can be repeated using instead of the vi and
“i defined above the different set given by roots of

il
(@]

%r Hsl)(klr)

r=2a

Further progress in the direction outlined here will depend upon
obtaining a useful evaluation of the integral in Eq. 13, Possibly,
depending on the size of kla and kea, an asymptotic evaluation would be
adequate, Alternatively, a direct numerical evaluation, though cumber-

some, might be a viable method.
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APFENDIX E

PARAMETERS OF RAYS IN A SEDIMENT LAYER

Several ray parameters are often useful for diagnostic purposes in
examining the results of calculations such as the reflection coefficient
of the ocean bottom. For example, for a ray penetrating into the bottom,
if the sediment sound speed is described by a positive linear gradient of
sound speed with depth, the parsmeters of interest include: (1) the depth
of penetration of the ray below the water sediment interface (turnaround
depth), (2) the length of the arc of the ray in the sediment, (3) the
horizontal displacement of the ray at the water sediment interface (hori-
zontal distance between the point of ray penetration into the bottom and
the point where the ray reemerges into the water), and (U4) the time the
ray spends in the sediment.

Resulis of calculations of these parameters are shown in Figs. El
through E5. For these figures, the sound speed versus depth z below the
water sediment interface is described by the expression

c(zs) =c  + gz, s

where cg = the sound speed in the sediment just below the water sediment
interface and g is the constant gradient of sound speed with depth. The
grazing angle specified in the figures is the angle in the water between
the ray and the water-sediment interface. In Fig. El, the ray penetration
depth is shown versus grazing angle for several realistic values of g for
the situation where sound speed at the top of the sediment column is equal
to sound speed in the overlying water. FKor the remaining figures (E2 to
E4) the ray perameters are shown for several values of the ratio of sound
speed at the top of the sediment to that of the overlying water (cs/cw),
but always for a gradient of one (g=1).
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